Math Problem Statement

indefinite integral of x^2+1/(x-9)(x-8)^2dx

Solution

To compute the indefinite integral of:

(x2+1(x9)(x8)2)dx\int \left( x^2 + \frac{1}{(x-9)(x-8)^2} \right) dx

We can break it down into two parts:

  1. The integral of x2x^2.
  2. The integral of 1(x9)(x8)2\frac{1}{(x-9)(x-8)^2}.

Step 1: Integrating x2x^2

x2dx=x33\int x^2 dx = \frac{x^3}{3}

Step 2: Integrating 1(x9)(x8)2\frac{1}{(x-9)(x-8)^2}

To handle this, we apply partial fraction decomposition. We express 1(x9)(x8)2\frac{1}{(x-9)(x-8)^2} as:

1(x9)(x8)2=Ax9+Bx8+C(x8)2\frac{1}{(x-9)(x-8)^2} = \frac{A}{x-9} + \frac{B}{x-8} + \frac{C}{(x-8)^2}

Now, let's solve for AA, BB, and CC.

1(x9)(x8)2=A(x8)2+B(x9)(x8)+C(x9)(x9)(x8)2\frac{1}{(x-9)(x-8)^2} = \frac{A(x-8)^2 + B(x-9)(x-8) + C(x-9)}{(x-9)(x-8)^2}

This simplifies to:

1=A(x8)2+B(x9)(x8)+C(x9)1 = A(x-8)^2 + B(x-9)(x-8) + C(x-9)

Now, we expand and solve for AA, BB, and CC.

Let me compute that.The partial fraction decomposition gives:

1(x9)(x8)2=1x91x81(x8)2\frac{1}{(x-9)(x-8)^2} = \frac{1}{x-9} - \frac{1}{x-8} - \frac{1}{(x-8)^2}

Step 3: Integrating the decomposition

Now, we integrate each term:

  1. 1x9dx=lnx9\int \frac{1}{x-9} dx = \ln|x-9|
  2. 1x8dx=lnx8\int \frac{1}{x-8} dx = \ln|x-8|
  3. 1(x8)2dx=1x8\int \frac{1}{(x-8)^2} dx = -\frac{1}{x-8}

Step 4: Final Answer

The full indefinite integral is:

(x2+1(x9)(x8)2)dx=x33+lnx9lnx8+1x8+C\int \left( x^2 + \frac{1}{(x-9)(x-8)^2} \right) dx = \frac{x^3}{3} + \ln|x-9| - \ln|x-8| + \frac{1}{x-8} + C

where CC is the constant of integration.

Would you like further details on any

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Indefinite Integrals
Partial Fraction Decomposition

Formulas

Integral of x^2: ∫ x^2 dx = x^3 / 3
Partial Fraction Decomposition: 1/((x-9)(x-8)^2) = A/(x-9) + B/(x-8) + C/(x-8)^2
Logarithmic and Rational Integrals: ∫ 1/(x-a) dx = ln|x-a|

Theorems

Fundamental Theorem of Calculus
Partial Fraction Decomposition

Suitable Grade Level

University Level (Calculus I or II)