Math Problem Statement

Consider the indefinite integral ∫ x sin(2x) dx. If we integrate by parts with u = x and dv = sin(2x) dx, which of the following is the integral above equal to?

Solution

We are tasked with evaluating the indefinite integral:

xsin(2x)dx\int x \sin(2x) \, dx

The problem suggests using integration by parts. The general formula for integration by parts is:

udv=uvvdu\int u \, dv = uv - \int v \, du

Given:

  • u=xu = x
  • dv=sin(2x)dxdv = \sin(2x) \, dx

Step-by-Step Solution:

  1. Differentiate uu: u=xdu=dxu = x \quad \Rightarrow \quad du = dx

  2. Integrate dvdv: dv=sin(2x)dxv=sin(2x)dxdv = \sin(2x) \, dx \quad \Rightarrow \quad v = \int \sin(2x) \, dx To integrate sin(2x)\sin(2x), we use a simple substitution or recall the known integral: sin(2x)dx=12cos(2x)\int \sin(2x) \, dx = -\frac{1}{2} \cos(2x)

  3. Apply the integration by parts formula: xsin(2x)dx=uvvdu\int x \sin(2x) \, dx = uv - \int v \, du Substituting: xsin(2x)dx=x(12cos(2x))(12cos(2x))dx\int x \sin(2x) \, dx = x \left( -\frac{1}{2} \cos(2x) \right) - \int \left( -\frac{1}{2} \cos(2x) \right) \, dx Simplifying: =12xcos(2x)+12cos(2x)dx= -\frac{1}{2} x \cos(2x) + \frac{1}{2} \int \cos(2x) \, dx

  4. Solve the remaining integral: cos(2x)dx=12sin(2x)\int \cos(2x) \, dx = \frac{1}{2} \sin(2x) So the full expression becomes: xsin(2x)dx=12xcos(2x)+14sin(2x)+C\int x \sin(2x) \, dx = -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) + C

Now, let's analyze the given options:

Looking at the provided choices, the correct form should match this structure before integrating the second term. The correct answer is:

12xcos(2x)+12cos(2x)dx-\frac{1}{2} x \cos(2x) + \frac{1}{2} \int \cos(2x) \, dx

This matches the fourth option:

12xcos(2x)+12cos(2x)dx\boxed{-\frac{1}{2} x \cos(2x) + \frac{1}{2} \int \cos(2x) \, dx}

Would you like further details or explanations on any step? Here are some additional related questions for practice:

  1. What is the integral of sin(3x)\sin(3x)?
  2. How would you apply integration by parts to xe2xdx\int x e^{2x} \, dx?
  3. What is the result of x2sin(2x)dx\int x^2 \sin(2x) \, dx?
  4. How does the integration by parts formula change when integrating functions with powers of xx?
  5. How do you integrate xnekxdx\int x^n e^{kx} \, dx?

Tip: When applying integration by parts, always ensure you choose uu and dvdv such that dudu simplifies and vv is easy to integrate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Trigonometric Integrals
Definite Integrals

Formulas

Integration by Parts: ∫ u dv = uv - ∫ v du
∫ sin(2x) dx = -1/2 cos(2x)

Theorems

Integration by Parts

Suitable Grade Level

College Calculus