Math Problem Statement
(\int _{-\infty }^{1}e^{\frac{\left(-x^{2}\right)}{2}}~\frac{1}{\sqrt[2]{6.28}}dx)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Gaussian Integrals
Error Function (erf)
Incomplete Integrals
Formulas
∫_{-∞}^{∞} e^{(-x^2)/2} dx = √(2π)
∫_{-∞}^{a} e^{(-x^2)/2} dx = √(π/2) * erf(a/√2)
Theorems
Gaussian Integral
Error Function Approximation
Suitable Grade Level
Undergraduate Calculus/Advanced High School
Related Recommendation
Indefinite and Definite Integrals of exp(-x^2) Using Error Function
Using Polar Coordinates to Solve Gaussian Integrals: A Step-by-Step Guide
Evaluate Integral of sqrt(e^(x^2))/(e^(x^2)) from -Infinity to Infinity
Solving the Gaussian Integral with Power of x: $$ \int x^{2r} e^{-\frac{x^2}{2\sigma^2}} \, dx $$
General Formula for Integral ∫x^n e^{-αx^2} dx: Gaussian Integral and Symmetry