Math Problem Statement

Реши

Рассортируйте интегралы по их сходимости или расходимости.

Solution

The task is to determine whether each given improper integral converges ("сходится") or diverges ("расходится"). I'll analyze each integral step by step to classify them:

Given integrals:

  1. 1+lnxx2+1dx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x^2 + 1}} \, dx
  2. 1+lnxxdx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x}} \, dx
  3. 1+lnxx2dx\int_{1}^{+\infty} \frac{\ln x}{x^2} \, dx
  4. 1+ln2xx2dx\int_{1}^{+\infty} \frac{\ln^2 x}{x^2} \, dx

Analysis:

1. 1+lnxx2+1dx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x^2 + 1}} \, dx

  • For large xx, x2+1x\sqrt{x^2 + 1} \approx x, so the integrand behaves like: lnxx2+1lnxx.\frac{\ln x}{\sqrt{x^2 + 1}} \sim \frac{\ln x}{x}.
  • The comparison integral is 1+lnxxdx\int_{1}^{+\infty} \frac{\ln x}{x} \, dx, which diverges because the logarithmic growth leads to divergence (it is known that 1+1xdx\int_{1}^{+\infty} \frac{1}{x} \, dx diverges, and lnx\ln x makes the divergence worse).
  • Conclusion: Diverges.

2. 1+lnxxdx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x}} \, dx

  • For large xx, the integrand behaves as: lnxx.\frac{\ln x}{\sqrt{x}}.
  • The comparison integral is 1+lnxx1/2dx\int_{1}^{+\infty} \frac{\ln x}{x^{1/2}} \, dx. Substituting u=xu = \sqrt{x}, this transforms into a divergent form: 1+lnxx1/2dx diverges since lnx grows unbounded.\int_{1}^{+\infty} \ln x \cdot x^{-1/2} \, dx \text{ diverges since }\ln x \text{ grows unbounded.}
  • Conclusion: Diverges.

3. 1+lnxx2dx\int_{1}^{+\infty} \frac{\ln x}{x^2} \, dx

  • For large xx, the integrand behaves like: lnxx2.\frac{\ln x}{x^2}.
  • The comparison integral is 1+lnxx2dx\int_{1}^{+\infty} \frac{\ln x}{x^2} \, dx. Integrating by parts (u=lnx,dv=x2dxu = \ln x, dv = x^{-2} dx): lnxx2dx=lnxx1x2dx=lnxx+1x.\int \frac{\ln x}{x^2} \, dx = -\frac{\ln x}{x} - \int -\frac{1}{x^2} dx = -\frac{\ln x}{x} + \frac{1}{x}. As xx \to \infty, this converges because lnxx0-\frac{\ln x}{x} \to 0 and 1x0\frac{1}{x} \to 0.
  • Conclusion: Converges.

4. 1+ln2xx2dx\int_{1}^{+\infty} \frac{\ln^2 x}{x^2} \, dx

  • For large xx, the integrand behaves like: ln2xx2.\frac{\ln^2 x}{x^2}.
  • Similar to the previous case, the comparison integral is 1+ln2xx2dx\int_{1}^{+\infty} \frac{\ln^2 x}{x^2} \, dx. Using the same integration by parts technique (u=ln2x,dv=x2dxu = \ln^2 x, dv = x^{-2} dx): ln2xx2dx converges because ln2x is still dominated by x2.\int \frac{\ln^2 x}{x^2} \, dx \text{ converges because }\ln^2 x \text{ is still dominated by }x^{-2}.
  • Conclusion: Converges.

Final Classification:

  1. 1+lnxx2+1dx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x^2 + 1}} \, dxDiverges.
  2. 1+lnxxdx\int_{1}^{+\infty} \frac{\ln x}{\sqrt{x}} \, dxDiverges.
  3. 1+lnxx2dx\int_{1}^{+\infty} \frac{\ln x}{x^2} \, dxConverges.
  4. 1+ln2xx2dx\int_{1}^{+\infty} \frac{\ln^2 x}{x^2} \, dxConverges.

Would you like me to explain any part in more detail? Let me know! 😊


Related Questions:

  1. What is an improper integral, and how is it evaluated?
  2. How does comparison testing work for improper integrals?
  3. Why does logarithmic growth often lead to divergence in integrals?
  4. Can you explain how integration by parts works for evaluating lnxx2\int \frac{\ln x}{x^2}?
  5. How does behavior analysis at infinity help determine convergence?

Tip:

Always check the asymptotic behavior of the integrand as xx \to \infty when determining convergence of improper integrals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper integrals
Asymptotic behavior
Convergence and divergence of integrals

Formulas

Integral convergence comparison tests
Integration by parts formula: ∫u dv = uv - ∫v du

Theorems

Comparison Test for Improper Integrals
Dominance of exponential and polynomial growth over logarithmic growth

Suitable Grade Level

Undergraduate Mathematics (Calculus)