Math Problem Statement

Find dy/dx by implicit differentiation in Problem 21: xy(2x + 3y) = 2

Solution

To find dydx\frac{dy}{dx} using implicit differentiation for the equation in Problem 21, xy(2x+3y)=2xy(2x + 3y) = 2, follow these steps:

  1. Differentiate both sides of the equation with respect to xx:

    The left side is xy(2x+3y)xy(2x + 3y). We need to use the product rule and the chain rule.

    ddx[xy(2x+3y)]=ddx(xy)(2x+3y)+xyddx(2x+3y)\frac{d}{dx}[xy(2x + 3y)] = \frac{d}{dx}(xy) \cdot (2x + 3y) + xy \cdot \frac{d}{dx}(2x + 3y)

    Differentiate xyxy:

    Using the product rule: u=xu = x and v=yv = y, so ddx(xy)=xdydx+y\frac{d}{dx}(xy) = x \frac{dy}{dx} + y.

    Differentiate 2x+3y2x + 3y:

    ddx(2x+3y)=2+3dydx\frac{d}{dx}(2x + 3y) = 2 + 3\frac{dy}{dx}.

    Substitute back into the equation:

    (xdydx+y)(2x+3y)+xy(2+3dydx)=0(x \frac{dy}{dx} + y)(2x + 3y) + xy(2 + 3\frac{dy}{dx}) = 0

  2. Expand and combine terms:

    (2x2+3xy+2x(ydydx)+3y2dydx)+2xy+3xydydx=0(2x^2 + 3xy + 2x(y \frac{dy}{dx}) + 3y^2 \frac{dy}{dx}) + 2xy + 3xy \frac{dy}{dx} = 0

  3. Combine like terms:

    2x2+5xy+(2xy+3y2+3xy)dydx=02x^2 + 5xy + (2xy + 3y^2 + 3xy)\frac{dy}{dx} = 0

  4. Isolate dydx\frac{dy}{dx}:

    (2xy+3y2+3xy)dydx=2x25xy(2xy + 3y^2 + 3xy)\frac{dy}{dx} = -2x^2 - 5xy

    dydx=2x25xy2xy+3y2+3xy\frac{dy}{dx} = \frac{-2x^2 - 5xy}{2xy + 3y^2 + 3xy}

    Simplify if necessary.

This gives you the expression for dydx\frac{dy}{dx}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Product Rule
Chain Rule
Differentiation

Formulas

Product Rule: d(uv)/dx = u'v + uv'
Chain Rule: d/dx[f(g(x))] = f'(g(x)) * g'(x)

Theorems

Implicit Differentiation Theorem

Suitable Grade Level

Grades 11-12