Math Problem Statement

Find the dy/dx of the following implicit functions: 1. 5 = x² + y² 2. x³ + y³ - 3axy = 0 3. y²(x + 2y) = c³ 4. x² + 4y² = 4xy 5. (x + y)² = 2ay

Solution

The image contains an assignment on implicit differentiation from Calculus I. Let's solve these problems one by one.

Problem 1:

5=x2+y25 = x^2 + y^2 To find dydx\frac{dy}{dx}, differentiate both sides implicitly with respect to xx:

0=2x+2ydydx0 = 2x + 2y \frac{dy}{dx} Solving for dydx\frac{dy}{dx}: 2ydydx=2x2y \frac{dy}{dx} = -2x dydx=xy\frac{dy}{dx} = \frac{-x}{y}

Problem 2:

x3+y33axy=0x^3 + y^3 - 3axy = 0 Differentiating implicitly with respect to xx:

3x2+3y2dydx3a(y+xdydx)=03x^2 + 3y^2 \frac{dy}{dx} - 3a\left( y + x \frac{dy}{dx} \right) = 0 Expanding and solving for dydx\frac{dy}{dx}: 3x2+3y2dydx3ay3axdydx=03x^2 + 3y^2 \frac{dy}{dx} - 3ay - 3ax \frac{dy}{dx} = 0 Grouping terms with dydx\frac{dy}{dx}: 3y2dydx3axdydx=3x2+3ay3y^2 \frac{dy}{dx} - 3ax \frac{dy}{dx} = -3x^2 + 3ay Factoring: dydx(3y23ax)=3ay3x2\frac{dy}{dx}(3y^2 - 3ax) = 3ay - 3x^2 dydx=3ay3x23y23ax\frac{dy}{dx} = \frac{3ay - 3x^2}{3y^2 - 3ax}

Problem 3:

y2(x+2y)=c3y^2(x + 2y) = c^3 Differentiate implicitly with respect to xx: 2ydydx(x+2y)+y2(1+2dydx)=02y \frac{dy}{dx}(x + 2y) + y^2 \left(1 + 2\frac{dy}{dx}\right) = 0 Expanding: 2y(x+2y)dydx+y2+2y2dydx=02y(x + 2y)\frac{dy}{dx} + y^2 + 2y^2 \frac{dy}{dx} = 0 Solving for dydx\frac{dy}{dx}: dydx(2y(x+2y)+2y2)=y2\frac{dy}{dx} \left( 2y(x + 2y) + 2y^2 \right) = -y^2 dydx=y22y(x+2y)+2y2\frac{dy}{dx} = \frac{-y^2}{2y(x + 2y) + 2y^2}

Problem 4:

x2+4y2=4xyx^2 + 4y^2 = 4xy Differentiate both sides: 2x+8ydydx=4(y+xdydx)2x + 8y \frac{dy}{dx} = 4\left( y + x \frac{dy}{dx} \right) Expanding: 2x+8ydydx=4y+4xdydx2x + 8y \frac{dy}{dx} = 4y + 4x \frac{dy}{dx} Rearranging: 8ydydx4xdydx=4y2x8y \frac{dy}{dx} - 4x \frac{dy}{dx} = 4y - 2x Factor out dydx\frac{dy}{dx}: dydx(8y4x)=4y2x\frac{dy}{dx}(8y - 4x) = 4y - 2x dydx=4y2x8y4x\frac{dy}{dx} = \frac{4y - 2x}{8y - 4x}

Problem 5:

(x+y)2=2ay(x + y)^2 = 2ay Differentiate implicitly: 2(x+y)(1+dydx)=2adydx2(x + y)(1 + \frac{dy}{dx}) = 2a \frac{dy}{dx} Simplify: (x+y)(1+dydx)=adydx(x + y)(1 + \frac{dy}{dx}) = a \frac{dy}{dx} Expanding: x+y+(x+y)dydx=adydxx + y + (x + y)\frac{dy}{dx} = a \frac{dy}{dx} Rearranging: (x+y)dydxadydx=xy(x + y)\frac{dy}{dx} - a \frac{dy}{dx} = -x - y Factor out dydx\frac{dy}{dx}: dydx((x+y)a)=xy\frac{dy}{dx} \left( (x + y) - a \right) = -x - y dydx=xyx+ya\frac{dy}{dx} = \frac{-x - y}{x + y - a}


Would you like further details on any of the steps or solutions?

Here are 5 related questions:

  1. How is implicit differentiation different from explicit differentiation?
  2. Can you apply implicit differentiation to any type of function, or are there specific cases?
  3. What is the significance of the chain rule in implicit differentiation?
  4. How would you verify if an implicit solution is correct for a given equation?
  5. How does the concept of partial derivatives relate to implicit differentiation?

Tip:

Always remember to apply the product and chain rules carefully when differentiating terms with multiple variables in implicit differentiation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Calculus
Derivatives
Chain Rule

Formulas

Implicit differentiation formula: d/dx[f(x, y)]
Product rule: d/dx[uv] = u'v + uv'
Chain rule: d/dx[f(g(x))] = f'(g(x)) * g'(x)

Theorems

Product Rule
Chain Rule

Suitable Grade Level

College Level (Calculus 1)