Math Problem Statement
Solution
The problem asks for a hypothesis test to determine if the percentage of smokers has reduced after the implementation of smoking cessation programs, based on the previous estimate of 35%.
In hypothesis testing, we define the null hypothesis and the alternative hypothesis .
-
Null Hypothesis (): This is the hypothesis that there is no change or effect. In this case, the null hypothesis is that the percentage of smokers is still 35%, so:
-
Alternative Hypothesis (): This is the hypothesis that reflects the research question. Since you believe that the percentage has reduced, the alternative hypothesis should be:
So, for the drop-down options:
- For , select and 0.35.
- For , select and 0.35.
Do you need further details on the steps involved in hypothesis testing or have any questions?
Here are some related questions:
- What is the next step in conducting this hypothesis test after setting the hypotheses?
- How do we determine the significance level () for the test?
- What kind of data do we need to perform this test (e.g., sample size, proportion)?
- What is a one-tailed test, and why is it relevant here?
- How do we calculate the test statistic for this hypothesis test?
Tip: Always clearly define your hypotheses before performing any hypothesis test, as it sets the stage for the entire analysis.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Hypothesis Testing
Proportions
Formulas
Null Hypothesis: H_0: p = 0.35
Alternative Hypothesis: H_a: p < 0.35
Theorems
Hypothesis Test for a Population Proportion
Suitable Grade Level
College Level (Statistics)
Related Recommendation
Hypothesis Testing for Proportion of Smokers among Educated Adults
Hypothesis Test on Smoking Reduction - Proportion Testing Example
Hypothesis Testing for Proportion: Environmental Concerns
Hypothesis Testing for Proportion of Low Birth Weight Babies Among Smokers
Hypothesis Testing: Testing a Reduction in Smoking Percentage