Math Problem Statement

Express sinh(2θ) and cosh(2θ) in terms of tanh(θ) and hence solve the equation 2cosh(2θ) + sinh(2θ) = 2, leave your answer in logarithmic form.

Solution

The question you uploaded asks to:

(a) Express sinh(2θ)\sinh(2\theta) and cosh(2θ)\cosh(2\theta) in terms of tanh(θ)\tanh(\theta), and then solve the equation: 2cosh(2θ)+sinh(2θ)=22\cosh(2\theta) + \sinh(2\theta) = 2 Leave the answer in logarithmic form.

Step 1: Express sinh(2θ)\sinh(2\theta) and cosh(2θ)\cosh(2\theta) in terms of tanh(θ)\tanh(\theta)

Using the double angle identities for hyperbolic functions:

sinh(2θ)=2sinh(θ)cosh(θ)\sinh(2\theta) = 2\sinh(\theta)\cosh(\theta) cosh(2θ)=cosh2(θ)+sinh2(θ)\cosh(2\theta) = \cosh^2(\theta) + \sinh^2(\theta)

Now, recall that: tanh(θ)=sinh(θ)cosh(θ)\tanh(\theta) = \frac{\sinh(\theta)}{\cosh(\theta)} Thus, sinh(θ)=tanh(θ)cosh(θ)\sinh(\theta) = \tanh(\theta)\cosh(\theta)

We can substitute this back into the double angle formulas.

Step 2: Simplify sinh(2θ)\sinh(2\theta) and cosh(2θ)\cosh(2\theta)

  1. sinh(2θ)\sinh(2\theta): sinh(2θ)=2sinh(θ)cosh(θ)=2tanh(θ)cosh2(θ)\sinh(2\theta) = 2 \sinh(\theta)\cosh(\theta) = 2 \tanh(\theta)\cosh^2(\theta) Since cosh2(θ)=11tanh2(θ)\cosh^2(\theta) = \frac{1}{1 - \tanh^2(\theta)}, we substitute: sinh(2θ)=2tanh(θ)1tanh2(θ)\sinh(2\theta) = 2 \frac{\tanh(\theta)}{1 - \tanh^2(\theta)}

  2. cosh(2θ)\cosh(2\theta): cosh(2θ)=cosh2(θ)+sinh2(θ)=11tanh2(θ)\cosh(2\theta) = \cosh^2(\theta) + \sinh^2(\theta) = \frac{1}{1 - \tanh^2(\theta)}

Step 3: Solve the equation

Now that we have sinh(2θ)\sinh(2\theta) and cosh(2θ)\cosh(2\theta) in terms of tanh(θ)\tanh(\theta), we substitute these into the equation:

2cosh(2θ)+sinh(2θ)=22 \cosh(2\theta) + \sinh(2\theta) = 2 Substitute cosh(2θ)=11tanh2(θ)\cosh(2\theta) = \frac{1}{1 - \tanh^2(\theta)} and sinh(2θ)=2tanh(θ)1tanh2(θ)\sinh(2\theta) = 2 \frac{\tanh(\theta)}{1 - \tanh^2(\theta)}: 2(11tanh2(θ))+2tanh(θ)1tanh2(θ)=22 \left( \frac{1}{1 - \tanh^2(\theta)} \right) + 2 \frac{\tanh(\theta)}{1 - \tanh^2(\theta)} = 2

Factor out the common denominator: 2+2tanh(θ)1tanh2(θ)=2\frac{2 + 2\tanh(\theta)}{1 - \tanh^2(\theta)} = 2

Multiply both sides by 1tanh2(θ)1 - \tanh^2(\theta): 2+2tanh(θ)=2(1tanh2(θ))2 + 2\tanh(\theta) = 2 (1 - \tanh^2(\theta))

Expand the right-hand side: 2+2tanh(θ)=22tanh2(θ)2 + 2\tanh(\theta) = 2 - 2\tanh^2(\theta)

Cancel the constant terms on both sides: 2tanh(θ)=2tanh2(θ)2\tanh(\theta) = -2\tanh^2(\theta)

Divide both sides by 2: tanh(θ)=tanh2(θ)\tanh(\theta) = -\tanh^2(\theta)

Rearrange the equation: tanh2(θ)+tanh(θ)=0\tanh^2(\theta) + \tanh(\theta) = 0

Factor the equation: tanh(θ)(tanh(θ)+1)=0\tanh(\theta)(\tanh(\theta) + 1) = 0

Thus, tanh(θ)=0\tanh(\theta) = 0 or tanh(θ)=1\tanh(\theta) = -1.

Step 4: Solve for θ\theta in logarithmic form

  1. If tanh(θ)=0\tanh(\theta) = 0, then θ=0\theta = 0.

  2. If tanh(θ)=1\tanh(\theta) = -1, we use the definition of tanh(θ)\tanh(\theta): tanh(θ)=e2θ1e2θ+1=1\tanh(\theta) = \frac{e^{2\theta} - 1}{e^{2\theta} + 1} = -1 Solving this equation: e2θ1e2θ+1=1\frac{e^{2\theta} - 1}{e^{2\theta} + 1} = -1 Cross-multiply: e2θ1=(e2θ+1)e^{2\theta} - 1 = - (e^{2\theta} + 1) e2θ1=e2θ1e^{2\theta} - 1 = -e^{2\theta} - 1 Simplify: 2e2θ=02e^{2\theta} = 0 Thus, θ=0\theta = 0.

Therefore, the solution is θ=0\theta = 0.


Do you need more details or have any questions?

Here are five related questions for further practice:

  1. Can you derive the identity for tanh(2θ)\tanh(2\theta) in terms of tanh(θ)\tanh(\theta)?
  2. How do the graphs of sinh(x)\sinh(x) and cosh(x)\cosh(x) compare?
  3. Solve cosh(2θ)sinh(2θ)=1\cosh(2\theta) - \sinh(2\theta) = 1 for θ\theta.
  4. How would you express tanh1(x)\tanh^{-1}(x) in terms of logarithms?
  5. What is the relationship between the hyperbolic and trigonometric functions?

Tip: Always keep the identities of hyperbolic functions handy to simplify complex equations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Algebraic Manipulation
Logarithmic Form

Formulas

sinh(2θ) = 2sinh(θ)cosh(θ)
cosh(2θ) = cosh^2(θ) + sinh^2(θ)
tanh(θ) = sinh(θ) / cosh(θ)
cosh^2(θ) = 1 / (1 - tanh^2(θ))

Theorems

Hyperbolic Identities
Quadratic Equations

Suitable Grade Level

Undergraduate level (calculus or advanced algebra topics)