Math Problem Statement

Express tanh(2x) in terms of e^(2x) and show that ln((1 + tanh(2x)) / (1 - tanh(2x))) = 4x.

Solution

The question in the image asks to:

  1. Express tanh(2x) in terms of e2xe^{2x}, and
  2. Show that ln(1+tanh(2x)1tanh(2x))=4x\ln\left(\frac{1 + \text{tanh}(2x)}{1 - \text{tanh}(2x)}\right) = 4x.

Solution:

Part (a): Express tanh(2x)\tanh(2x) in terms of e2xe^{2x}

The hyperbolic tangent function is defined as: tanh(2x)=sinh(2x)cosh(2x)\tanh(2x) = \frac{\sinh(2x)}{\cosh(2x)} where: sinh(2x)=e2xe2x2,cosh(2x)=e2x+e2x2.\sinh(2x) = \frac{e^{2x} - e^{-2x}}{2}, \quad \cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}.

Thus: tanh(2x)=e2xe2x2e2x+e2x2=e2xe2xe2x+e2x.\tanh(2x) = \frac{\frac{e^{2x} - e^{-2x}}{2}}{\frac{e^{2x} + e^{-2x}}{2}} = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}.

Part (b): Show ln(1+tanh(2x)1tanh(2x))=4x\ln\left(\frac{1 + \tanh(2x)}{1 - \tanh(2x)}\right) = 4x

Using the expression for tanh(2x)\tanh(2x): tanh(2x)=e2xe2xe2x+e2x,\tanh(2x) = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}, the numerator 1+tanh(2x)1 + \tanh(2x) becomes: 1+tanh(2x)=1+e2xe2xe2x+e2x=(e2x+e2x)+(e2xe2x)e2x+e2x=2e2xe2x+e2x.1 + \tanh(2x) = 1 + \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} = \frac{(e^{2x} + e^{-2x}) + (e^{2x} - e^{-2x})}{e^{2x} + e^{-2x}} = \frac{2e^{2x}}{e^{2x} + e^{-2x}}.

Similarly, the denominator 1tanh(2x)1 - \tanh(2x) becomes: 1tanh(2x)=1e2xe2xe2x+e2x=(e2x+e2x)(e2xe2x)e2x+e2x=2e2xe2x+e2x.1 - \tanh(2x) = 1 - \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} = \frac{(e^{2x} + e^{-2x}) - (e^{2x} - e^{-2x})}{e^{2x} + e^{-2x}} = \frac{2e^{-2x}}{e^{2x} + e^{-2x}}.

The fraction 1+tanh(2x)1tanh(2x)\frac{1 + \tanh(2x)}{1 - \tanh(2x)} is then: 1+tanh(2x)1tanh(2x)=2e2xe2x+e2x2e2xe2x+e2x=2e2x2e2x=e4x.\frac{1 + \tanh(2x)}{1 - \tanh(2x)} = \frac{\frac{2e^{2x}}{e^{2x} + e^{-2x}}}{\frac{2e^{-2x}}{e^{2x} + e^{-2x}}} = \frac{2e^{2x}}{2e^{-2x}} = e^{4x}.

Taking the natural logarithm: ln(1+tanh(2x)1tanh(2x))=ln(e4x)=4x.\ln\left(\frac{1 + \tanh(2x)}{1 - \tanh(2x)}\right) = \ln(e^{4x}) = 4x.

This completes the proof.


Would you like additional details or have any questions? Here are 5 related questions for deeper exploration:

  1. What are the definitions of other hyperbolic functions, such as sinh(x)\sinh(x) and cosh(x)\cosh(x)?
  2. How does tanh(x)\tanh(x) behave asymptotically as xx \to \infty?
  3. Can you derive similar logarithmic identities for other hyperbolic functions?
  4. How can hyperbolic functions be applied to solve real-world problems in physics or engineering?
  5. How does the relationship between tanh(2x)\tanh(2x) and e2xe^{2x} connect to complex exponentials?

Tip: Always verify logarithmic identities by rewriting the terms into their exponential equivalents—it often simplifies the work.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Logarithms
Exponential Functions

Formulas

tanh(x) = sinh(x) / cosh(x)
sinh(x) = (e^x - e^(-x)) / 2
cosh(x) = (e^x + e^(-x)) / 2
ln(e^a) = a

Theorems

Properties of logarithms
Exponential-logarithmic identity

Suitable Grade Level

Undergraduate (or advanced high school)