Math Problem Statement

Integrate sin^3(4x)

Solution

To integrate sin3(4x)\sin^3(4x), we can use trigonometric identities to simplify the expression.

Step-by-Step Solution

  1. Rewrite sin3(4x)\sin^3(4x) using the identity: sin3(4x)=sin(4x)sin2(4x)\sin^3(4x) = \sin(4x) \cdot \sin^2(4x)

    Since sin2(4x)=1cos2(4x)\sin^2(4x) = 1 - \cos^2(4x), we can rewrite sin3(4x)\sin^3(4x) as: sin3(4x)=sin(4x)(1cos2(4x))\sin^3(4x) = \sin(4x) \cdot (1 - \cos^2(4x))

  2. Expand the expression: sin3(4x)=sin(4x)sin(4x)cos2(4x)\sin^3(4x) = \sin(4x) - \sin(4x) \cdot \cos^2(4x)

  3. Integrate each term separately: Now, the integral becomes: sin3(4x)dx=sin(4x)dxsin(4x)cos2(4x)dx\int \sin^3(4x) \, dx = \int \sin(4x) \, dx - \int \sin(4x) \cdot \cos^2(4x) \, dx

  4. Solve the first integral: sin(4x)dx=14cos(4x)\int \sin(4x) \, dx = -\frac{1}{4} \cos(4x)

  5. Use substitution for the second integral: Let u=cos(4x)u = \cos(4x), so du=4sin(4x)dxdu = -4 \sin(4x) \, dx or sin(4x)dx=14du\sin(4x) \, dx = -\frac{1}{4} \, du.

    Substituting into the second integral, we get: sin(4x)cos2(4x)dx=14u2du\int \sin(4x) \cdot \cos^2(4x) \, dx = -\frac{1}{4} \int u^2 \, du

  6. Integrate u2u^2: 14u2du=14u33=u312-\frac{1}{4} \int u^2 \, du = -\frac{1}{4} \cdot \frac{u^3}{3} = -\frac{u^3}{12}

  7. Substitute back u=cos(4x)u = \cos(4x): u312=cos3(4x)12-\frac{u^3}{12} = -\frac{\cos^3(4x)}{12}

  8. Combine results: sin3(4x)dx=14cos(4x)+cos3(4x)12+C\int \sin^3(4x) \, dx = -\frac{1}{4} \cos(4x) + \frac{\cos^3(4x)}{12} + C

Final Answer

sin3(4x)dx=14cos(4x)+cos3(4x)12+C\int \sin^3(4x) \, dx = -\frac{1}{4} \cos(4x) + \frac{\cos^3(4x)}{12} + C

Would you like more details or have any questions about this solution?


Here are five questions to further explore this topic:

  1. How would you integrate cos3(4x)\cos^3(4x)?
  2. Can you evaluate sin4(4x)dx\int \sin^4(4x) \, dx?
  3. How would the solution change if we integrated sin3(ax)\sin^3(ax) with a general coefficient aa?
  4. What other methods could simplify trigonometric integrals like sin3(4x)\sin^3(4x)?
  5. How would you approach an integral involving sin3(4x)cos3(4x)\sin^3(4x) \cos^3(4x)?

Tip: Using substitution and trigonometric identities can make complex integrals much simpler by reducing the power of trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integrals
Integration
Substitution Method
Trigonometric Identities

Formulas

sin^2(x) = 1 - cos^2(x)
∫ sin(ax) dx = -1/a cos(ax)
u-substitution

Theorems

-

Suitable Grade Level

Grades 11-12