Math Problem Statement

How to evaluate trig functions in exact form

Solution

To evaluate trigonometric functions in exact form means finding their exact values rather than decimal approximations. This involves using known values, angles, and trigonometric identities.

Here’s a step-by-step guide to help you evaluate trig functions in exact form:


1. Know Special Angles and Their Values

Many trig functions have exact values for specific angles commonly used in trigonometry, such as:

Angle (Degrees)Angle (Radians)sin θcos θtan θ
0010
30°π/61/2√3/21/√3
45°π/4√2/2√2/21
60°π/3√3/21/2√3
90°π/210Undefined

2. Use the Unit Circle

The unit circle provides exact values for sine, cosine, and tangent for common angles in all four quadrants.

For example:

  • sin(π/3)\sin(\pi/3) corresponds to the y-coordinate at (π/3)(\pi/3) on the unit circle, which is 3/2\sqrt{3}/2.
  • cos(π/4)\cos(\pi/4) corresponds to the x-coordinate at (π/4)(\pi/4), which is 2/2\sqrt{2}/2.

3. Trigonometric Identities

Some key identities can help simplify expressions and find exact values:

  • Reciprocal Identities:

    • cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}
    • secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}
    • cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}
  • Pythagorean Identities:

    • sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1
    • 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta
    • 1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta

4. Reference Angles

If the angle is not in the first quadrant, use reference angles to determine the exact value.

  • Reference angle: The acute angle (θ\theta) formed between the terminal side and the xx-axis.
  • For angles in:
    • Quadrant II: θ=180θ\theta' = 180^\circ - \theta or πθ\pi - \theta
    • Quadrant III: θ=θ180\theta' = \theta - 180^\circ or θπ\theta - \pi
    • Quadrant IV: θ=360θ\theta' = 360^\circ - \theta or 2πθ2\pi - \theta

5. Exact Values for Special Triangles

  • 30°-60°-90° Triangle:

    • Opposite 30°: 11
    • Opposite 60°: 3\sqrt{3}
    • Hypotenuse: 22
  • 45°-45°-90° Triangle:

    • Opposite each 45° angle: 11
    • Hypotenuse: 2\sqrt{2}

Example Calculations

  1. sin(60)\sin(60^\circ)

    • From the table or unit circle:
      sin(60)=3/2\sin(60^\circ) = \sqrt{3}/2
  2. cos(225)\cos(225^\circ)

    • 225225^\circ is in Quadrant III.
    • Reference angle: 225180=45225^\circ - 180^\circ = 45^\circ.
      cos(225)=cos(45)=2/2\cos(225^\circ) = -\cos(45^\circ) = -\sqrt{2}/2
  3. tan(π/4)\tan(\pi/4)

    • From the table:
      tan(π/4)=1\tan(\pi/4) = 1

Would you like more details or additional examples?

Related Questions

  1. How do you use the unit circle to find exact values?
  2. What are the exact values for trigonometric functions of 120120^\circ?
  3. How do you find exact values of trigonometric functions using identities?
  4. How do reference angles help evaluate trig functions?
  5. What is the significance of the 30°-60°-90° and 45°-45°-90° triangles?

Tip: Memorize the unit circle and common angle values to quickly evaluate trig functions in exact form.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Special Angles
Trigonometric Identities
Reference Angles

Formulas

sin^2 θ + cos^2 θ = 1
1 + tan^2 θ = sec^2 θ
1 + cot^2 θ = csc^2 θ
sin(θ), cos(θ), tan(θ) for special angles (0°, 30°, 45°, 60°, 90°)

Theorems

Pythagorean Identities
Reciprocal Identities
Exact Value Triangles (30°-60°-90°, 45°-45°-90°)

Suitable Grade Level

Grades 9-12