Math Problem Statement

g(x)=-2x^2+6x-8 horizontal shift to the left by 5 units

Solution

To apply a horizontal shift to the left by 5 units to the function g(x)=2x2+6x8g(x) = -2x^2 + 6x - 8, you can modify the function by replacing xx with x+5x + 5.

Here’s how it works:

Original function:

g(x)=2x2+6x8g(x) = -2x^2 + 6x - 8

After shifting 5 units to the left:

Replace xx with x+5x + 5: g(x+5)=2(x+5)2+6(x+5)8g(x + 5) = -2(x + 5)^2 + 6(x + 5) - 8

Simplifying the expression:

  1. Expand (x+5)2(x + 5)^2: (x+5)2=x2+10x+25(x + 5)^2 = x^2 + 10x + 25
  2. Substitute back into the function: g(x+5)=2(x2+10x+25)+6(x+5)8g(x + 5) = -2(x^2 + 10x + 25) + 6(x + 5) - 8
  3. Distribute the terms: [ g

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic Functions
Function Transformations

Formulas

Quadratic function formula: g(x) = ax^2 + bx + c

Theorems

-

Suitable Grade Level

Grades 10-12