Math Problem Statement

g(x)=-2x^2+6x-8 horizontal shift to the left by 5 units

Solution

To horizontally shift the function g(x)=2x2+6x8g(x) = -2x^2 + 6x - 8 to the left by 5 units, you replace xx with x+5x + 5 in the function.

The new function after the horizontal shift is:

g(x)=2(x+5)2+6(x+5)8g(x) = -2(x + 5)^2 + 6(x + 5) - 8

Now, let's expand and simplify the expression:

  1. Expand (x+5)2(x + 5)^2: (x+5)2=x2+10x+25(x + 5)^2 = x^2 + 10x + 25

  2. Substitute back into the function: g(x)=2(x2+10x+25)+6(x+5)8g(x) = -2(x^2 + 10x + 25) + 6(x + 5) - 8

  3. Distribute the

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic Functions
Horizontal Shifts

Formulas

Quadratic function formula: g(x) = ax^2 + bx + c
Horizontal shift formula: g(x) shifts left by 'a' units is g(x) = g(x + a)

Theorems

-

Suitable Grade Level

Grades 10-12