Math Problem Statement

nr b und c

Untersuchen Sie, ob der Graph von f für x → ∞ oder x → −∞ eine waagerechte Asymptote hat. Geben Sie in diesem Fall ihre Gleichung an. Analysieren Sie die Funktionen b) f(x) = 5 + x^2e^x und c) f(x) = x + e^(-2x+1).

Solution

To examine the horizontal asymptotes for the functions b) f(x)=5+x2exb) \ f(x) = 5 + x^2 e^x and c) f(x)=x+e2x+1c) \ f(x) = x + e^{-2x+1}, let's proceed:


(b) f(x)=5+x2exf(x) = 5 + x^2 e^x:

  1. As xx \to \infty:

    • exe^x \to \infty and x2x^2 \to \infty, so x2exx^2 e^x \to \infty.
    • The function f(x)f(x) \to \infty.
    • Hence, no horizontal asymptote exists for xx \to \infty.
  2. As xx \to -\infty:

    • ex0+e^x \to 0^+ (since exe^x approaches zero for xx \to -\infty), and x2>0x^2 > 0, so x2ex0x^2 e^x \to 0.
    • Therefore, f(x)5+0=5f(x) \to 5 + 0 = 5.
    • Horizontal asymptote: y=5y = 5 as xx \to -\infty.

(c) f(x)=x+e2x+1f(x) = x + e^{-2x+1}:

  1. As xx \to \infty:

    • In the term e2x+1e^{-2x+1}, the exponent 2x+1-2x+1 \to -\infty, so e2x+10+e^{-2x+1} \to 0^+.
    • The function f(x)x+0=xf(x) \approx x + 0 = x \to \infty.
    • Hence, no horizontal asymptote exists for xx \to \infty.
  2. As xx \to -\infty:

    • The exponent 2x+1-2x+1 \to \infty, so e2x+1e^{-2x+1} \to \infty.
    • The term xx \to -\infty, but e2x+1e^{-2x+1} dominates. Therefore, f(x)f(x) \to \infty.
    • No horizontal asymptote exists for xx \to -\infty.

Summary of Results:

  • For b)f(x)=5+x2exb) f(x) = 5 + x^2 e^x, horizontal asymptote: y=5y = 5 as xx \to -\infty.
  • For c)f(x)=x+e2x+1c) f(x) = x + e^{-2x+1}, no horizontal asymptote exists.

Would you like further explanations or visualizations for these results?


Related Questions:

  1. What is the definition of a horizontal asymptote, and why does f(x)f(x) approach it as xx \to \infty or xx \to -\infty?
  2. How can we determine horizontal asymptotes using limits algebraically?
  3. Why does exe^x \to \infty dominate polynomial growth such as x2x^2?
  4. Could c)f(x)=x+e2x+1c) f(x) = x + e^{-2x+1} have other asymptotes (e.g., oblique)?
  5. How does e2x+1e^{-2x+1} decay compared to other exponential terms like exe^{-x}?

Tip: Always compute the limit of f(x)f(x) as x±x \to \pm\infty to identify horizontal asymptotes clearly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Exponential Functions
Asymptotes

Formulas

lim_{x→∞} f(x)
lim_{x→-∞} f(x)
e^x behavior as x → ±∞

Theorems

Horizontal Asymptote Definition
Exponential Growth/Decay Properties

Suitable Grade Level

Grades 10-12