Math Problem Statement

Укажите все верные утверждения: 1. Если разложение группы G на левые и правые смежные классы по подгруппе H совпадает, то H — нормальная подгруппа. 2. Группы Z₃ × Z₁₅ и Z₉ × Z₅ изоморфны. 3. Индекс подгруппы, порожденной элементами (1 2), (2 3) в группе S₄, равен 2. 4. В группе S₄ есть подгруппа H порядка 9.

Solution

Let's analyze each statement one by one to determine which are correct.

  1. Statement: "Если разложение группы GG на левые и правые смежные классы по подгруппе HH совпадает, то HH — нормальная подгруппа."

    • Explanation: This statement is indeed correct. If the left and right cosets of a subgroup HH in a group GG coincide, then HH is a normal subgroup of GG.
    • Conclusion: This statement is true.
  2. Statement: "Группы Z3×Z15\mathbb{Z}_3 \times \mathbb{Z}_{15} и Z9×Z5\mathbb{Z}_9 \times \mathbb{Z}_5 изоморфны."

    • Explanation: To determine if these groups are isomorphic, we need to examine their structure. The group Z3×Z15\mathbb{Z}_3 \times \mathbb{Z}_{15} is isomorphic to Z45\mathbb{Z}_{45} because 33 and 1515 are coprime, so the direct product will have order 3×15=453 \times 15 = 45. For Z9×Z5\mathbb{Z}_9 \times \mathbb{Z}_5, 99 and 55 are also coprime, giving a group isomorphic to Z45\mathbb{Z}_{45}. Therefore, these two groups are isomorphic.
    • Conclusion: This statement is true.
  3. Statement: "Индекс подгруппы порожденной элементами (1 2),(2 3)(1\ 2), (2\ 3) в группе S4S_4 равен 2."

    • Explanation: The elements (1 2)(1\ 2) and (2 3)(2\ 3) in the symmetric group S4S_4 generate the subgroup A4A_4, which is the alternating group of order 12. The order of S4S_4 is 24, so the index of A4A_4 in S4S_4 is 2412=2\frac{24}{12} = 2.
    • Conclusion: This statement is true.
  4. Statement: "В группе S4S_4 есть подгруппа HH порядка 9."

    • Explanation: The group S4S_4 has order 24. Any subgroup of S4S_4 must have an order that divides 24 by Lagrange's theorem. Since 9 does not divide 24, there cannot be a subgroup of order 9 in S4S_4.
    • Conclusion: This statement is false.

Summary of Correct Statements

The correct statements are:

  • The first statement (about normal subgroups).
  • The second statement (isomorphism of groups).
  • The third statement (index of a subgroup in S4S_4).

Would you like further explanation on any of these points?


Additional Questions

  1. What are the general criteria for determining if two groups are isomorphic?
  2. How does Lagrange's theorem help in identifying possible subgroup orders?
  3. What properties of cosets help identify normal subgroups?
  4. Can you explore more examples of normal and non-normal subgroups in various groups?
  5. How does the structure of the symmetric group SnS_n influence the possible subgroups and their orders?

Tip

When determining if two groups are isomorphic, consider their orders, the structure of their elements, and possible decompositions, such as direct products with coprime orders.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group Theory
Isomorphism
Subgroups
Symmetric Groups

Formulas

-

Theorems

Lagrange's Theorem
Properties of Normal Subgroups

Suitable Grade Level

Undergraduate