Math Problem Statement

Use Green's Theorem to evaluate. ∮ C ( x 2 + y 4 )

d x + ( x 2 − y 2 )

d y ∮ C ​ (x 2 +y 4 ) dx+(x 2 −y 2 ) dy Where C C​ is the positively oriented triangle with vertices ( 0 , 0 ) (0,0)​, ( 0 , 3 ) (0,3)​​, and ( 9 , 3 ) (9,3)​.

Solution

Green's Theorem states that for a positively oriented, piecewise smooth, simple closed curve CC enclosing a region RR:

C(Pdx+Qdy)=R(QxPy)dA\oint_C \left( P \, dx + Q \, dy \right) = \iint_R \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA

Here, we have:

  • P(x,y)=x2+y4P(x, y) = x^2 + y^4
  • Q(x,y)=x2y2Q(x, y) = x^2 - y^2

The region RR is the triangle with vertices (0,0)(0, 0), (0,3)(0, 3), and (9,3)(9, 3).


Step 1: Compute partial derivatives

Qx=x(x2y2)=2x\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(x^2 - y^2) = 2x Py=y(x2+y4)=4y3\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(x^2 + y^4) = 4y^3

The integrand for the double integral becomes: QxPy=2x4y3\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 4y^3


Step 2: Set up the limits of integration

The triangle is bounded by:

  • y=0y = 0 (base),
  • y=3y = 3 (top),
  • x=0x = 0 to x=3yx = 3y (right slanted edge).

Thus, the region RR can be described with: 0y3,0x3y0 \leq y \leq 3, \quad 0 \leq x \leq 3y


Step 3: Evaluate the double integral

R(2x4y3)dA=0303y(2x4y3)dxdy\iint_R \left( 2x - 4y^3 \right) dA = \int_0^3 \int_0^{3y} \left( 2x - 4y^3 \right) dx \, dy

Integral with respect to xx:

03y(2x4y3)dx=[x24y3x]03y\int_0^{3y} \left( 2x - 4y^3 \right) dx = \left[ x^2 - 4y^3x \right]_0^{3y} =((3y)24y3(3y))(024y3(0))= \left( (3y)^2 - 4y^3(3y) \right) - \left( 0^2 - 4y^3(0) \right) =9y212y4= 9y^2 - 12y^4

Integral with respect to yy:

03(9y212y4)dy=039y2dy0312y4dy\int_0^3 \left( 9y^2 - 12y^4 \right) dy = \int_0^3 9y^2 \, dy - \int_0^3 12y^4 \, dy

Evaluate each term:

  1. 039y2dy=903y2dy=9[y33]03=9(273)=81\int_0^3 9y^2 \, dy = 9 \int_0^3 y^2 \, dy = 9 \left[ \frac{y^3}{3} \right]_0^3 = 9 \left( \frac{27}{3} \right) = 81
  2. 0312y4dy=1203y4dy=12[y55]03=12(2435)=29165\int_0^3 12y^4 \, dy = 12 \int_0^3 y^4 \, dy = 12 \left[ \frac{y^5}{5} \right]_0^3 = 12 \left( \frac{243}{5} \right) = \frac{2916}{5}

Combine the results: 03(9y212y4)dy=8129165=405529165=25115\int_0^3 \left( 9y^2 - 12y^4 \right) dy = 81 - \frac{2916}{5} = \frac{405}{5} - \frac{2916}{5} = -\frac{2511}{5}


Final Answer:

C((x2+y4)dx+(x2y2)dy)=25115\oint_C \left( (x^2 + y^4) \, dx + (x^2 - y^2) \, dy \right) = -\frac{2511}{5}


Would you like further details on the steps or a graph of the region?

  1. What is Green's Theorem?
  2. How do partial derivatives relate to the theorem?
  3. Why do we need limits of integration?
  4. Can this be solved without Green's Theorem?
  5. How to visualize such regions geometrically?

Tip: Always check the orientation of the curve before applying Green’s Theorem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Green's Theorem
Line Integrals
Partial Derivatives
Double Integrals

Formulas

Green's Theorem: ∮C (P dx + Q dy) = ∬R (∂Q/∂x − ∂P/∂y) dA
Partial Derivatives: ∂Q/∂x and ∂P/∂y
Double Integral Setup: ∬R (f(x, y)) dA = ∫(y=0 to y=3) ∫(x=0 to x=3y) f(x, y) dx dy

Theorems

Green's Theorem

Suitable Grade Level

College Level (Calculus II or Multivariable Calculus)