Math Problem Statement

Graph

[h(x)=4\cos\left(\dfrac{\pi}{3}x+\pi\right)-3] in the interactive widget. Note that one moveable point always defines an extremum point in the graph and the other point always defines a neighbouring intersection with the midline. [\small{1}] [\small{2}] [\small{3}] [\small{4}] [\small{5}] [\small{6}] [\small{7}] [\small{8}] [\small{9}] [\small{\llap{-}2}] [\small{\llap{-}3}] [\small{\llap{-}4}] [\small{\llap{-}5}] [\small{\llap{-}6}] [\small{\llap{-}7}] [\small{\llap{-}8}] [\small{\llap{-}9}] [\small{1}] [\small{2}] [\small{3}] [\small{4}] [\small{5}] [\small{6}] [\small{7}] [\small{8}] [\small{9}] [\small{\llap{-}2}] [\small{\llap{-}3}] [\small{\llap{-}4}] [\small{\llap{-}5}] [\small{\llap{-}6}] [\small{\llap{-}7}] [\small{\llap{-}8}] [\small{\llap{-}9}] [y] [x]

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Graphing Functions
Cosine Function
Periodic Functions

Formulas

h(x) = a * cos(bx + c) + d
Amplitude = |a|
Period = 2π / |b|
Phase Shift = -c / b
Vertical Shift = d

Theorems

Properties of Trigonometric Functions
Periodicity of Cosine Function

Suitable Grade Level

Grades 10-12