Math Problem Statement
Graph
[h(x)=4\cos\left(\dfrac{\pi}{3}x+\pi\right)-3] in the interactive widget. Note that one moveable point always defines an extremum point in the graph and the other point always defines a neighbouring intersection with the midline. [\small{1}] [\small{2}] [\small{3}] [\small{4}] [\small{5}] [\small{6}] [\small{7}] [\small{8}] [\small{9}] [\small{\llap{-}2}] [\small{\llap{-}3}] [\small{\llap{-}4}] [\small{\llap{-}5}] [\small{\llap{-}6}] [\small{\llap{-}7}] [\small{\llap{-}8}] [\small{\llap{-}9}] [\small{1}] [\small{2}] [\small{3}] [\small{4}] [\small{5}] [\small{6}] [\small{7}] [\small{8}] [\small{9}] [\small{\llap{-}2}] [\small{\llap{-}3}] [\small{\llap{-}4}] [\small{\llap{-}5}] [\small{\llap{-}6}] [\small{\llap{-}7}] [\small{\llap{-}8}] [\small{\llap{-}9}] [y] [x]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Graphing Functions
Cosine Function
Periodic Functions
Formulas
h(x) = a * cos(bx + c) + d
Amplitude = |a|
Period = 2π / |b|
Phase Shift = -c / b
Vertical Shift = d
Theorems
Properties of Trigonometric Functions
Periodicity of Cosine Function
Suitable Grade Level
Grades 10-12