Math Problem Statement
which of these unanswers is false
Solution
Let's analyze the graph and the multiple-choice answers one by one:
-
Option A:
Looking at the graph at , the value of is approximately 1, as there is no hole or discontinuity. So, Option A is true. -
Option B: is undefined
At , the graph shows an open circle, indicating that the function is undefined at this point. So, Option B is true. -
Option C: is undefined
At , the graph is continuous with no open circles or discontinuities. There is a defined value at , which is around 2. Hence, Option C is false. -
Option D:
As approaches 1 from both sides, the graph tends to the value 2. Therefore, the limit exists and is equal to 2. So, Option D is true. -
Option E:
The right-hand limit as approaches 0 from the positive side gives a value of 1. So, Option E is true.
Conclusion:
The false statement is Option C: is not undefined.
Would you like further details on the limit analysis or function behavior?
Here are 5 related questions:
- What are the conditions for a function to be continuous at a point?
- How is the limit of a function at a point defined?
- Can you explain the difference between one-sided and two-sided limits?
- What happens if a function has a hole or jump at a certain point?
- How do you determine if a function is undefined at a certain point?
Tip: Always check for open circles or breaks in the graph to identify where the function might be undefined.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Continuity
Graph Analysis
Formulas
-
Theorems
Limit Theorem
Continuity Definition
Suitable Grade Level
Grades 10-12