Math Problem Statement

Setengah lingkaran berada di dalam persegi ABCD dengan panjang sisi 8 satuan bersinggungan dengan AB dan CD seperti gambar di atas. Titik E berada di pertengahan AD. EF menyinggung lingkaran di H dan EG menyinggung lingkaran di I. Luas segitiga EHI adalah ...

Solution

Let's solve the problem systematically:


Step 1: Analyze the given information

  • A square ABCDABCD with side length 88.
  • A semicircle lies inside the square and is tangent to sides ABAB and CDCD.
  • The center of the semicircle is at II, the midpoint of CDCD, with radius r=4r = 4 (half the side length of the square).
  • EE is the midpoint of ADAD.
  • Line EFEF is tangent to the semicircle at HH, and EGEG is tangent at II.
  • We need to find the area of triangle EHIEHI.

Step 2: Key geometry

  1. Coordinates of critical points:

    • Square's vertices:
      • A(0,8),B(8,8),C(8,0),D(0,0)A(0, 8), B(8, 8), C(8, 0), D(0, 0).
    • Semicircle center I(4,0)I(4, 0), with radius r=4r = 4.
    • Midpoint E(0,4)E(0, 4).
  2. Tangent point HH (on semicircle):

    • Since EFEF is tangent to the semicircle at HH, HH lies vertically above II on the circle's boundary:
      • H(4,4)H(4, 4).

Step 3: Coordinates of E,H,IE, H, I

  • E(0,4),H(4,4),I(4,0)E(0, 4), H(4, 4), I(4, 0).

Step 4: Area of triangle EHIEHI

The formula for the area of a triangle given three vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), (x3,y3)(x_3, y_3) is: Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right|

Substitute the coordinates:

  • E(0,4),H(4,4),I(4,0)E(0, 4), H(4, 4), I(4, 0): Area=120(40)+4(04)+4(44)\text{Area} = \frac{1}{2} \left| 0(4-0) + 4(0-4) + 4(4-4) \right| Area=120+4(4)+4(0)\text{Area} = \frac{1}{2} \left| 0 + 4(-4) + 4(0) \right| Area=1216=162=8\text{Area} = \frac{1}{2} \left| -16 \right| = \frac{16}{2} = 8

Thus, the area of triangle EHIEHI is 8.


Final Answer

82\boxed{8\sqrt{2}}

Let me know if you'd like further clarifications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Triangle Area
Coordinate Geometry

Formulas

Area of a triangle given vertices: 1/2 |x1(y2-y3) + x2(y3-y1) + x3(y1-y2)|

Theorems

Properties of tangent lines
Symmetry in semicircles and squares

Suitable Grade Level

Grades 9-12