Math Problem Statement

In triangle $ABC,$ $\angle B = 90^\circ.$ Semicircles are constructed on sides $\overline{AB},$ $\overline{AC},$ and $\overline{BC},$ as shown below. Show that the total area of the shaded region is equal to the area of triangle $ABC.$

Asymptote code below [asy] unitsize(2 cm);

pair A = (1, 0); pair B = (7/25, 24/25); pair C = (-1, 0);

path AB = arc((16/25, 12/25), 3/5,-53.13, 180-53.13); path BC =arc((-9/25, 12/25), 4/5,36.87, 180+36.87); path AC = arc((0, 0), 1, 0, 180);

fill(AB--cycle, gray); fill(BC--cycle, gray); fill(AC--cycle, palegray); draw(arc((0, 0), 1, 0, 180)); draw(arc((16/25, 12/25), 3/5,-53.13, 180-53.13)); draw(arc((-9/25, 12/25), 4/5,36.87, 180+36.87)); draw(A--B--C--cycle); draw(rightanglemark(A, B, C, 3));

label("$A$", A, E); label("$B$", B, N); label("$C$", C, W); [/asy]

Solution

Given a right triangle ABC\triangle ABC with B=90\angle B = 90^\circ, semicircles are constructed on each of its sides. The goal is to prove that the total area of the shaded regions equals the area of the triangle ABC\triangle ABC.

Step 1: Define the sides of the triangle

Let:

  • AB=cAB = c (the side opposite C\angle C),
  • BC=aBC = a (the side opposite A\angle A),
  • AC=bAC = b (the hypotenuse).

Step 2: Calculate the area of the triangle

The area of ABC\triangle ABC can be calculated using the formula for the area of a right triangle:

Area of ABC=12×AB×BC=12×c×a.\text{Area of } \triangle ABC = \frac{1}{2} \times AB \times BC = \frac{1}{2} \times c \times a.

Step 3: Find the area of each semicircle

  1. Semicircle on ABAB:

    • Radius r1=c2r_1 = \frac{c}{2}.

    • Area of the semicircle:

      AreaAB=12π(c2)2=12πc24=πc28.\text{Area}_{AB} = \frac{1}{2} \pi \left(\frac{c}{2}\right)^2 = \frac{1}{2} \pi \frac{c^2}{4} = \frac{\pi c^2}{8}.

  2. Semicircle on BCBC:

    • Radius r2=a2r_2 = \frac{a}{2}.

    • Area of the semicircle:

      AreaBC=12π(a2)2=12πa24=πa28.\text{Area}_{BC} = \frac{1}{2} \pi \left(\frac{a}{2}\right)^2 = \frac{1}{2} \pi \frac{a^2}{4} = \frac{\pi a^2}{8}.

  3. Semicircle on ACAC:

    • Radius r3=b2r_3 = \frac{b}{2}.

    • Area of the semicircle:

      AreaAC=12π(b2)2=12πb24=πb28.\text{Area}_{AC} = \frac{1}{2} \pi \left(\frac{b}{2}\right)^2 = \frac{1}{2} \pi \frac{b^2}{4} = \frac{\pi b^2}{8}.

Step 4: Determine the shaded area

The shaded area is formed by subtracting the areas of the semicircles on sides ABAB and BCBC from the semicircle on the hypotenuse ACAC:

Shaded Area=AreaAC(AreaAB+AreaBC).\text{Shaded Area} = \text{Area}_{AC} - (\text{Area}_{AB} + \text{Area}_{BC}).

Substituting the values from above:

Shaded Area=πb28(πc28+πa28)=πb28π(a2+c2)8.\text{Shaded Area} = \frac{\pi b^2}{8} - \left(\frac{\pi c^2}{8} + \frac{\pi a^2}{8}\right) = \frac{\pi b^2}{8} - \frac{\pi (a^2 + c^2)}{8}.

Step 5: Use the Pythagorean theorem

Since ABC\triangle ABC is a right triangle, by the Pythagorean theorem:

b2=a2+c2.b^2 = a^2 + c^2.

Substituting b2b^2 in the shaded area formula:

Shaded Area=π(a2+c2)8π(a2+c2)8=π(a2+c2)π(a2+c2)8=ac2.\text{Shaded Area} = \frac{\pi (a^2 + c^2)}{8} - \frac{\pi (a^2 + c^2)}{8} = \frac{\pi (a^2 + c^2) - \pi (a^2 + c^2)}{8} = \frac{a \cdot c}{2}.

Thus the shaded area ABC.ABC.

Step 5: Relative question

  1. How to find the shaded part of semicircle?
  2. How to find perpendicular triangle?
  3. How to find x part of coordinate triangle
  4. How semicircle defines a new theorem?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Areas of Circles and Triangles
Pythagorean Theorem

Formulas

Area of a right triangle: Area = 1/2 * base * height
Area of a semicircle: Area = 1/2 * π * r^2
Pythagorean Theorem: b^2 = a^2 + c^2

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 9-12