Math Problem Statement

直角三角形ABC,∠ABC为直角,AB=1,BC=2√2,AC=3。做∠BAC的平分线交BC于D点,从D点做AC的垂线于E,求DE、BD、AD长度

Solution

我们来求解这个几何问题,详细计算如下:

已知条件:

  1. ABC\triangle ABC 为直角三角形,ABC=90\angle ABC = 90^\circ
  2. AB=1AB = 1, BC=22BC = 2\sqrt{2}, AC=3AC = 3
  3. ∠BAC 的平分线交 BC 于 DD,从 DD 做 AC 的垂线交 AC 于 EE

求解:

1. 使用角平分线定理求 BDBDDCDC

角平分线定理:BDDC=ABAC.\frac{BD}{DC} = \frac{AB}{AC}. 代入 AB=1AB = 1AC=3AC = 3,得: BDDC=13.\frac{BD}{DC} = \frac{1}{3}.BD=xBD = x,则 DC=3xDC = 3x。由 BD+DC=BC=22BD + DC = BC = 2\sqrt{2},得: x+3x=22,x + 3x = 2\sqrt{2}, 4x=22,4x = 2\sqrt{2}, x=22.x = \frac{\sqrt{2}}{2}. 因此,BD=22BD = \frac{\sqrt{2}}{2}DC=322DC = \frac{3\sqrt{2}}{2}

2. 确定点 DD 的坐标

B(0,0)B(0, 0)C(22,0)C(2\sqrt{2}, 0),设 D(x,0)D(x, 0)。因为 BD=22BD = \frac{\sqrt{2}}{2}DC=322DC = \frac{3\sqrt{2}}{2},我们有: x=BD=22.x = BD = \frac{\sqrt{2}}{2}. 所以 D(22,0)D\left(\frac{\sqrt{2}}{2}, 0\right)

3. 确定 ADAD 的长度

根据角平分线性质,角平分线将对应角分成两部分,并满足: AD2=ABACBDDC.AD^2 = AB \cdot AC - BD \cdot DC. 代入 AB=1AB = 1AC=3AC = 3BD=22BD = \frac{\sqrt{2}}{2}DC=322DC = \frac{3\sqrt{2}}{2},计算: AD2=1322322.AD^2 = 1 \cdot 3 - \frac{\sqrt{2}}{2} \cdot \frac{3\sqrt{2}}{2}. AD2=364.AD^2 = 3 - \frac{6}{4}. AD2=31.5=1.5.AD^2 = 3 - 1.5 = 1.5. AD=1.5=62.AD = \sqrt{1.5} = \frac{\sqrt{6}}{2}.

4. 求 DEDE 的长度

DDACAC 的垂线长度 DEDE 可由三角形的面积公式计算。三角形 ABC\triangle ABC 的面积为: 面积=12ABBC=12122=2.\text{面积} = \frac{1}{2} \cdot AB \cdot BC = \frac{1}{2} \cdot 1 \cdot 2\sqrt{2} = \sqrt{2}. 同理,面积也等于: 面积=12ACDE.\text{面积} = \frac{1}{2} \cdot AC \cdot DE. 代入 AC=3AC = 3,解 DEDE2=123DE.\sqrt{2} = \frac{1}{2} \cdot 3 \cdot DE. DE=232=223.DE = \frac{\sqrt{2}}{\frac{3}{2}} = \frac{2\sqrt{2}}{3}.

5. 结果汇总

  • BD=22BD = \frac{\sqrt{2}}{2},
  • AD=62AD = \frac{\sqrt{6}}{2},
  • DE=223DE = \frac{2\sqrt{2}}{3}.

如果有疑问或者需要详细步骤,请随时告诉我!


五个相关问题:

  1. 如何证明角平分线定理在直角三角形中的应用?
  2. 如果 ACAC 的长度变化,如何重新计算 DD 的位置?
  3. 如何从三角形面积推导 DEDE 的公式?
  4. DD 不在角平分线上时,如何重新定义问题?
  5. 角平分线与中线在直角三角形中有何关系?

一个小提示:

在几何问题中,善用对称性和基本定理(如角平分线定理、相似三角形)可以显著简化计算!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Right Triangle Properties
Angle Bisector Theorem
Triangle Area Calculation
Coordinate Geometry

Formulas

Angle Bisector Theorem: BD/DC = AB/AC
Triangle Area Formula: Area = 1/2 * base * height
Distance Formula: sqrt((x2 - x1)^2 + (y2 - y1)^2)

Theorems

Angle Bisector Theorem
Pythagorean Theorem
Properties of Right Triangles

Suitable Grade Level

Grades 9-12