Math Problem Statement
F¨ur a, b, c > 0 ist ein zweidimensionales Ellipsoid gegeben durch E2 a,b,c := {(x, y, z)T ∈ R3 : x2 a2 + y2 b2 + z2 c2 = 1}. Der Schnitt von E2 a,b,c mit der xz-Ebene l¨asst sich parametrisieren vermittels c(t) = a · cos(t), 0, c · sin(t)T , t ∈ [0, 2π]. Zeigen Sie, dass die Umparametrisierung ˜c von c nach Bogenl¨ange eine Geod¨atische auf E2 a,b,c ist.
Solution
To show that the reparametrization of by arc length is a geodesic on the ellipsoid , we proceed in the following steps:
1. Restating the Problem
We are given the ellipsoid:
and its intersection with the -plane is parameterized as:
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Differential Geometry
Parametrization
Geodesics
Arc Length
Formulas
x^2/a^2 + y^2/b^2 + z^2/c^2 = 1 (Ellipsoid equation)
s(t) = ∫_0^t ||c'(u)|| du (Arc length)
c'(t) = (-a sin(t), 0, c cos(t))^T
||c'(t)|| = sqrt(a^2 sin^2(t) + c^2 cos^2(t))
Theorems
Geodesic equation in local coordinates
Properties of arc length reparametrization
Christoffel symbols and geodesic equations
Suitable Grade Level
Graduate Level