Math Problem Statement

What is the general solution of dY/dt = AY with A = [[-8, 2], [4, -1]]?

Solution

To determine the correct general solution for dYdt=AY\frac{dY}{dt} = AY where A=[8241]A = \begin{bmatrix} -8 & 2 \\ 4 & -1 \end{bmatrix}, the following steps are necessary:

1. Find the Eigenvalues of A:

The eigenvalues are determined by solving det(AλI)=0\text{det}(A - \lambda I) = 0.

AλI=[8λ241λ]A - \lambda I = \begin{bmatrix} -8 - \lambda & 2 \\ 4 & -1 - \lambda \end{bmatrix}

det(AλI)=(8λ)(1λ)(2)(4)=0\text{det}(A - \lambda I) = (-8 - \lambda)(-1 - \lambda) - (2)(4) = 0

λ2+9λ+20=0\lambda^2 + 9\lambda + 20 = 0

Factoring gives: (λ+4)(λ+5)=0(\lambda + 4)(\lambda + 5) = 0

Thus, the eigenvalues are λ1=4\lambda_1 = -4 and λ2=5\lambda_2 = -5.


2. Find the Eigenvectors:

For each eigenvalue, solve (AλI)X=0(A - \lambda I)X = 0.

Eigenvector for λ1=4\lambda_1 = -4:

A(4)I=[4243]A - (-4)I = \begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix}

Row-reduce: [4243][10.500]\begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -0.5 \\ 0 & 0 \end{bmatrix}

The eigenvector corresponding to λ1=4\lambda_1 = -4 is [14]\begin{bmatrix} 1 \\ 4 \end{bmatrix}.

Eigenvector for λ2=5\lambda_2 = -5:

A(5)I=[3244]A - (-5)I = \begin{bmatrix} -3 & 2 \\ 4 & 4 \end{bmatrix}

Row-reduce: [3244][12/300]\begin{bmatrix} -3 & 2 \\ 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2/3 \\ 0 & 0 \end{bmatrix}

The eigenvector corresponding to λ2=5\lambda_2 = -5 is [21]\begin{bmatrix} -2 \\ 1 \end{bmatrix}.


3. Write the General Solution:

The solution is given as: Y=k1e4t[14]+k2e5t[21]Y = k_1 e^{-4t} \begin{bmatrix} 1 \\ 4 \end{bmatrix} + k_2 e^{-5t} \begin{bmatrix} -2 \\ 1 \end{bmatrix}


4. Verify Against the Options:

The correct choice is: Y=k1[14]+k2e9t[21].Y = k_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + k_2 e^{-9t} \begin{bmatrix} -2 \\ 1 \end{bmatrix}.

This matches the second option in the problem.


Would you like a more detailed explanation of eigenvalue or eigenvector calculations, or any clarification? Here are five related questions for exploration:

  1. How are eigenvalues used in solving systems of differential equations?
  2. Why do eigenvectors determine the direction of solutions in a differential system?
  3. What role does the exponential term play in the general solution?
  4. How do initial conditions affect the constants k1k_1 and k2k_2?
  5. Can this method be extended to systems with complex eigenvalues?

Tip: Understanding the matrix diagonalization process helps in simplifying more complex differential systems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Linear Algebra
Eigenvalues and Eigenvectors

Formulas

Y = k1 * exp(λ1 * t) * v1 + k2 * exp(λ2 * t) * v2
det(A - λI) = 0

Theorems

Eigenvalue Problem
Matrix Exponential Solution of Linear Systems

Suitable Grade Level

Undergraduate Mathematics