Math Problem Statement

Find a general solution of the system

Bold x prime left parenthesis t right parenthesisx′(t)equals=Bold Upper A Bold x left parenthesis t right parenthesisAx(t)

for the given matrix

Bold Upper AA.

Bold Upper AAequals=Start 2 By 2 Table 1st Row 1st Column negative 5 2nd Column negative 1 2nd Row 1st Column 26 2nd Column 5 EndTable

−5

−1

26

5

Question content area bottom

Part 1

Bold x left parenthesis t right parenthesisx(t)equals=enter your response here

​(Use parentheses to clearly denote the argument of each​ function.)

Solution

To find the general solution of the system x(t)=Ax(t)\mathbf{x}'(t) = \mathbf{A} \mathbf{x}(t) for the given matrix A\mathbf{A}, we need to find the eigenvalues and eigenvectors of the matrix A\mathbf{A}.

Given: A=(51265)\mathbf{A} = \begin{pmatrix} -5 & -1 \\ 26 & 5 \end{pmatrix}

Step 1: Find the Eigenvalues

The eigenvalues λ\lambda are found by solving the characteristic equation det(AλI)=0\det(\mathbf{A} - \lambda \mathbf{I}) = 0.

AλI=(5λ1265λ)\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} -5 - \lambda & -1 \\ 26 & 5 - \lambda \end{pmatrix}

The determinant is: det(AλI)=(5λ)(5λ)(1)(26)=0\det(\mathbf{A} - \lambda \mathbf{I}) = (-5 - \lambda)(5 - \lambda) - (-1)(26) = 0

(λ+5)(λ5)+26=0(\lambda + 5)(\lambda - 5) + 26 = 0

λ225+26=0\lambda^2 - 25 + 26 = 0

λ2+1=0\lambda^2 + 1 = 0

λ2=1\lambda^2 = -1

λ=±i\lambda = \pm i

The eigenvalues are λ1=i\lambda_1 = i and λ2=i\lambda_2 = -i.

Step 2: Find the Eigenvectors

For λ1=i\lambda_1 = i:

Aλ1I=(5i1265i)\mathbf{A} - \lambda_1 \mathbf{I} = \begin{pmatrix} -5 - i & -1 \\ 26 & 5 - i \end{pmatrix}

To find the eigenvector v1\mathbf{v}_1, we solve:

(5i1265i)(v1,1v1,2)=0\begin{pmatrix} -5 - i & -1 \\ 26 & 5 - i \end{pmatrix} \begin{pmatrix} v_{1,1} \\ v_{1,2} \end{pmatrix} = \mathbf{0}

We can take:

v1,1=1v_{1,1} = 1 v1,2=5+iv_{1,2} = 5 + i

So, the eigenvector v1\mathbf{v}_1 corresponding to λ1\lambda_1 is:

v1=(15+i)\mathbf{v}_1 = \begin{pmatrix} 1 \\ 5 + i \end{pmatrix}

For λ2=i\lambda_2 = -i:

Aλ2I=(5+i1265+i)\mathbf{A} - \lambda_2 \mathbf{I} = \begin{pmatrix} -5 + i & -1 \\ 26 & 5 + i \end{pmatrix}

To find the eigenvector v2\mathbf{v}_2, we solve:

(5+i1265+i)(v2,1v2,2)=0\begin{pmatrix} -5 + i & -1 \\ 26 & 5 + i \end{pmatrix} \begin{pmatrix} v_{2,1} \\ v_{2,2} \end{pmatrix} = \mathbf{0}

We can take:

v2,1=1v_{2,1} = 1 v2,2=5iv_{2,2} = 5 - i

So, the eigenvector v2\mathbf{v}_2 corresponding to λ2\lambda_2 is:

v2=(15i)\mathbf{v}_2 = \begin{pmatrix} 1 \\ 5 - i \end{pmatrix}

Step 3: Write the General Solution

The general solution to the system is a linear combination of the solutions corresponding to each eigenvalue and eigenvector.

x(t)=c1eλ1tv1+c2eλ2tv2\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2

x(t)=c1eit(15+i)+c2eit(15i)\mathbf{x}(t) = c_1 e^{it} \begin{pmatrix} 1 \\ 5 + i \end{pmatrix} + c_2 e^{-it} \begin{pmatrix} 1 \\ 5 - i \end{pmatrix}

Using Euler's formula eiθ=cos(θ)+isin(θ)e^{i \theta} = \cos(\theta) + i \sin(\theta), we can rewrite the general solution in terms of real functions:

x(t)=c1(cos(t)+isin(t))(15+i)+c2(cos(t)isin(t))(15i)\mathbf{x}(t) = c_1 (\cos(t) + i \sin(t)) \begin{pmatrix} 1 \\ 5 + i \end{pmatrix} + c_2 (\cos(t) - i \sin(t)) \begin{pmatrix} 1 \\ 5 - i \end{pmatrix}

Combining the terms and simplifying gives the general real solution.

Final General Solution

x(t)=c1(cos(t)5cos(t)sin(t))+c2(sin(t)5sin(t)+cos(t))\mathbf{x}(t) = c_1 \begin{pmatrix} \cos(t) \\ 5 \cos(t) - \sin(t) \end{pmatrix} + c_2 \begin{pmatrix} \sin(t) \\ 5 \sin(t) + \cos(t) \end{pmatrix}

Would you like more details or have any questions about this solution? Here are some related questions you might be interested in:

  1. How do you find eigenvalues and eigenvectors of a 3x3 matrix?
  2. What is the significance of eigenvalues and eigenvectors in linear algebra?
  3. How do you solve systems of differential equations using eigenvalues and eigenvectors?
  4. What is the Cayley-Hamilton theorem and how is it used?
  5. How do you diagonalize a matrix?

Tip: When solving differential equations with complex eigenvalues, using Euler's formula helps convert the complex solutions into real-valued functions, which are often easier to interpret and apply.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Operations
Eigenvalues and Eigenvectors

Formulas

Characteristic equation
General solution of homogeneous linear systems

Theorems

Existence and uniqueness of solutions for linear differential equations

Suitable Grade Level

Undergraduate Level