Math Problem Statement

get me the answers not how to do them

Solve the system of differential equations given by \( \mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 10 & -6 \end{pmatrix} \mathbf{x} \) and answer questions about the general solution, behavior as \( t \to \infty \), and the correct direction field.

Solution

To provide solutions to your questions based on the image, I'll analyze the mathematical system. Here's the answer breakdown for each part:


(a) General Solution:

The system of differential equations is:

\begin{pmatrix} 3 & -2 \\ 10 & -6 \end{pmatrix} \mathbf{x}$$ To find the general solution, compute the eigenvalues and eigenvectors of the coefficient matrix: #### Eigenvalues: $$\text{Determinant: } \begin{vmatrix}3-\lambda & -2\\ 10 & -6-\lambda\end{vmatrix} = (3-\lambda)(-6-\lambda) - (-20) = \lambda^2 + 3\lambda - 38$$ Solve the quadratic equation: $$\lambda = -6, \lambda = 4$$ #### Eigenvectors: 1. For $$\lambda = -6$$: Solve: $$\begin{pmatrix} 3-(-6) & -2 \\ 10 & -6-(-6) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$ Gives eigenvector: $$\mathbf{v_1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$. 2. For $$\lambda = 4$$: Solve: $$\begin{pmatrix} 3-4 & -2 \\ 10 & -6-4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$ Gives eigenvector: $$\mathbf{v_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$. #### Solution: $$\mathbf{x}(t) = c_1 e^{-6t} \begin{pmatrix} 1 \\ 5 \end{pmatrix} + c_2 e^{4t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$ --- ### (b) As $$t \to \infty$$: - Since one eigenvalue ($$\lambda = 4$$) is positive, the solution term with $$e^{4t}$$ dominates as $$t \to \infty$$, meaning the solution grows without bound in the direction of $$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$. --- ### (c) Direction Field: - The direction field shows eigenvector-aligned behavior with a sink along $$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$$ and a source along $$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$. Place the point to reflect this behavior.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Differential Equations
Eigenvalues and Eigenvectors

Formulas

Matrix determinant formula: \( \text{det}(A - \lambda I) = 0 \)
Solution to system: \( \mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v_1} + c_2 e^{\lambda_2 t} \mathbf{v_2} \)

Theorems

Eigenvalue and Eigenvector Theorem
Exponential Solution of Linear Systems

Suitable Grade Level

Undergraduate