Math Problem Statement

Find e^1.17 using Gauss forward formula from the provided table of x and e^x values.

Solution

To find e1.17e^{1.17} using the Gauss forward interpolation formula, let's go step by step. The given table of xx and exe^x values will be used to calculate this.

Table of values:

\hline x & e^x \\ \hline 1.00 & 2.7183 \\ 1.05 & 2.8577 \\ 1.10 & 3.0042 \\ 1.15 & 3.1582 \\ 1.20 & 3.3201 \\ 1.25 & 3.4903 \\ 1.30 & 3.6693 \\ \hline \end{array}$$ The **Gauss forward interpolation formula** is: $$f(x) = f_0 + p \Delta f_0 + \frac{p(p-1)}{2!} \Delta^2 f_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 f_0 + \dots$$ Where: - $$p = \frac{x - x_0}{h}$$ - $$h$$ is the step size, which is $$h = 1.05 - 1.00 = 0.05$$. - $$f_0$$ corresponds to $$x_0 = 1.15$$ (the nearest value to $$1.17$$). We will calculate the forward differences $$\Delta f$$, $$\Delta^2 f$$, etc., and then apply the formula. Let me perform the calculations for this.The value of $$e^{1.17}$$ using the Gauss forward interpolation formula is approximately: $$e^{1.17} \approx 3.2220$$ Here is the difference table used in the calculation: $$\begin{array}{|c|c|c|c|c|c|c|} \hline x & \Delta^0 f & \Delta^1 f & \Delta^2 f & \Delta^3 f & \Delta^4 f & \Delta^5 f \\ \hline 1.00 & 2.7183 & 0.1394 & 0.0071 & 0.0004 & 0.0000 & -0.0000 \\ 1.05 & 2.8577 & 0.1465 & 0.0075 & 0.0004 & -0.0000 & 0.0001 \\ 1.10 & 3.0042 & 0.1540 & 0.0079 & 0.0004 & 0.0001 & 0.0000 \\ 1.15 & 3.1582 & 0.1619 & 0.0083 & 0.0005 & 0.0000 & 0.0000 \\ 1.20 & 3.3201 & 0.1702 & 0.0088 & 0.0000 & 0.0000 & 0.0000 \\ 1.25 & 3.4903 & 0.1790 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 1.30 & 3.6693 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \hline \end{array}$$ Would you like more details on the interpolation process or further explanation of the differences? ### Follow-up questions: 1. How does the Gauss forward formula compare to other interpolation methods? 2. What is the significance of the forward differences in interpolation? 3. Can the Gauss backward formula be used here, and what would change? 4. How does changing the step size $$h$$ affect the accuracy of the interpolation? 5. What are some applications of interpolation methods in real-life scenarios? **Tip**: When working with interpolation, choosing the closest reference point helps minimize error and improve accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Methods
Interpolation
Gauss Forward Interpolation

Formulas

Gauss Forward Interpolation Formula: f(x) = f0 + pΔf0 + (p(p-1)/2!)Δ²f0 + (p(p-1)(p-2)/3!)Δ³f0 + ...
Forward differences: Δf, Δ²f, etc.
Step size h = x₁ - x₀

Theorems

Gauss Interpolation Theorem

Suitable Grade Level

Undergraduate or Higher Secondary Level