Math Problem Statement

Soit f la fonction définie sur R+ par : f(x) = x - 2√x + 1. Vérifier que (∀x ∈ IR+): f(x) = (√x - 1)^2, Calculer lim f(x) x→+∞, Étudier la continuité de la fonction f sur IR+, Étudier la dérivabilité de la fonction f à droite de 0, etc.

Solution

The image you've uploaded contains a series of exercises about a function ff defined on R+\mathbb{R}^+ by the formula f(x)=x2x+1f(x) = x - 2\sqrt{x} + 1. Let me go through the questions step-by-step:

1) Vérifier que xR+\forall x \in \mathbb{R}^+, f(x)=(x1)2f(x) = (\sqrt{x} - 1)^2:

We need to prove that: f(x)=x2x+1=(x1)2f(x) = x - 2\sqrt{x} + 1 = (\sqrt{x} - 1)^2 By expanding the right-hand side: (x1)2=(x)22x1+12=x2x+1(\sqrt{x} - 1)^2 = (\sqrt{x})^2 - 2 \cdot \sqrt{x} \cdot 1 + 1^2 = x - 2\sqrt{x} + 1 So the expression matches, and the equality is verified.

2) Calculer limx+f(x)\lim_{x \to +\infty} f(x):

We need to compute the limit: limx+f(x)=limx+(x2x+1)\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 2\sqrt{x} + 1) As x+x \to +\infty, 2x2\sqrt{x} grows much slower than xx, so: limx+(x2x+1)=limx+x=+\lim_{x \to +\infty} (x - 2\sqrt{x} + 1) = \lim_{x \to +\infty} x = +\infty

3) Étudier la continuité de la fonction ff sur R+\mathbb{R}^+:

Since the function f(x)=(x1)2f(x) = (\sqrt{x} - 1)^2 is a polynomial in terms of x\sqrt{x}, which is continuous on R+\mathbb{R}^+, we conclude that ff is continuous on R+\mathbb{R}^+.

4) Étudier la dérivabilité de la fonction ff à droite de 0, puis interpréter géométriquement le résultat:

First, we compute the derivative f(x)f'(x) for x>0x > 0. Since f(x)=(x1)2f(x) = (\sqrt{x} - 1)^2, applying the chain rule: f(x)=2(x1)12x=x1xf'(x) = 2(\sqrt{x} - 1) \cdot \frac{1}{2\sqrt{x}} = \frac{\sqrt{x} - 1}{\sqrt{x}} Now, at x=0x = 0, we examine the derivative from the right: f+(0)=limx0+x1x=1f'_+(0) = \lim_{x \to 0^+} \frac{\sqrt{x} - 1}{\sqrt{x}} = -1 This implies that ff is differentiable at 0 from the right, with a derivative of -1, indicating that the tangent line at x=0x = 0 has a slope of -1.


Questions related to this:

  1. What happens to the function f(x)f(x) as x0+x \to 0^+? Does it have a minimum or maximum at x=0x = 0?
  2. How does the limit limx0+f(x)\lim_{x \to 0^+} f(x) behave?
  3. Can you describe the geometric interpretation of the derivative f(0)=1f'(0) = -1?
  4. Is the function ff strictly increasing or decreasing for all xR+x \in \mathbb{R}^+?
  5. How does the behavior of the function f(x)f(x) change as xx increases toward infinity?

Tip:

When checking for continuity or differentiability at a point, it’s useful to verify both left-hand and right-hand limits and derivatives to ensure smoothness or detect possible corner points.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Continuity
Differentiation
Tangent lines
Inverse functions

Formulas

f(x) = (√x - 1)^2
f'(x) = (√x - 1)/√x
Tangent line equation: y = mx + b

Theorems

Limit as x → +∞
Chain rule
Continuity and differentiability at a point

Suitable Grade Level

University (Calculus)