Math Problem Statement

Soit f la fonction définie sur IR^+ par : f(x) = x - 2√x + 1. 1) Vérifier que f(x) = (√x - 1)^2 2) Calculer lim (x→+∞) f(x) 3) Etudier la continuité de la fonction f sur IR^+ 4) a) Etudier la dérivabilité de la fonction à droite de 0, puis interpréter géométriquement le résultat obtenu.

Solution

Let's break down the tasks from the image step by step:

1) Vérifier que f(x)=(x1)2f(x) = ( \sqrt{x} - 1 )^2

The function given is f(x)=x2x+1f(x) = x - 2\sqrt{x} + 1.

We are asked to verify that f(x)f(x) can also be written as (x1)2( \sqrt{x} - 1 )^2.

Verification:

First, expand (x1)2( \sqrt{x} - 1 )^2:

(x1)2=(x1)(x1)=x2x+1( \sqrt{x} - 1 )^2 = ( \sqrt{x} - 1 )( \sqrt{x} - 1 ) = x - 2\sqrt{x} + 1

Since this is the same as the given expression for f(x)f(x), the verification is correct.

2) Calculer limx+f(x)\lim_{x \to +\infty} f(x)

We need to calculate the limit as xx approaches infinity for f(x)=(x1)2f(x) = ( \sqrt{x} - 1 )^2.

f(x)=(x1)2=x2x+1f(x) = ( \sqrt{x} - 1 )^2 = x - 2\sqrt{x} + 1

When x+x \to +\infty:

  • xx \to \infty
  • 2x2\sqrt{x} \to \infty

Thus, the leading term xx dominates, and we get:

limx+f(x)=\lim_{x \to +\infty} f(x) = \infty

3) Étudier la continuité de la fonction ff sur R+\mathbb{R}^+

The function f(x)=x2x+1f(x) = x - 2\sqrt{x} + 1 is a composition of continuous functions:

  • xx is continuous.
  • x\sqrt{x} is continuous on R+\mathbb{R}^+.
  • The operations of addition, subtraction, and squaring preserve continuity.

Thus, f(x)f(x) is continuous on R+\mathbb{R}^+.

4a) Étudier la dérivabilité de la fonction à droite de 0

We now need to study the differentiability of f(x)f(x) at 0 from the right.

Step 1: Compute the derivative for x>0x > 0

We first find the derivative of f(x)=(x1)2f(x) = ( \sqrt{x} - 1 )^2:

Using the chain rule: f(x)=2(x1)12x=x1xf'(x) = 2( \sqrt{x} - 1 ) \cdot \frac{1}{2\sqrt{x}} = \frac{\sqrt{x} - 1}{\sqrt{x}}

For x=0+x = 0^+: f(0+)=limx0+x1x=limx0+(11x)=f'(0^+) = \lim_{x \to 0^+} \frac{\sqrt{x} - 1}{\sqrt{x}} = \lim_{x \to 0^+} \left( 1 - \frac{1}{\sqrt{x}} \right) = -\infty

Thus, f(0+)f'(0^+) tends to -\infty, meaning the function has a vertical tangent at x=0x = 0.

Step 2: Interpretation (Géométriquement le résultat obtenu)

The fact that f(0+)=f'(0^+) = -\infty indicates that the function has a very steep downward slope as it approaches x=0x = 0 from the right. This suggests a vertical tangent line at x=0x = 0.

Summary

  • 1) The expression f(x)=(x1)2f(x) = ( \sqrt{x} - 1 )^2 is verified.
  • 2) limx+f(x)=\lim_{x \to +\infty} f(x) = \infty.
  • 3) The function ff is continuous on R+\mathbb{R}^+.
  • 4a) The derivative f(0+)=f'(0^+) = -\infty, indicating a vertical tangent at x=0x = 0.

Do you want more details on any of the steps? Here are some related questions for further exploration:

  1. What are the conditions for differentiability at a point?
  2. How can we interpret limits that approach infinity in real-world contexts?
  3. Can we generalize the behavior of f(x)f(x) for very large values of xx?
  4. What are some other examples of functions with vertical tangents?
  5. How can we rigorously prove the continuity of a function using epsilon-delta definitions?

Tip: Always check for continuity before testing differentiability, as differentiability implies continuity but not vice versa!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Limits
Continuity
Derivatives

Formulas

f(x) = x - 2√x + 1
f(x) = (√x - 1)^2
lim (x→+∞) f(x)
f'(x) = (√x - 1) / √x

Theorems

Continuity of functions
Differentiability conditions
Limits of polynomial functions

Suitable Grade Level

University Level - Calculus