Math Problem Statement

Выберите все верные утверждения: Пусть f(x) = cos(x), g(x) = x^2 - 3. Тогда f(x) * g(x) — бесконечно малая функция при x → 0− 0. Пусть f(x) = ³√x − 1, g(x) = x³ + 1. Тогда f(x) * g(x) — бесконечно большая функция при x → 1− 0. Разность функций f(x) = arcsin x и g(x) = x² при x → 0 — бесконечно малая функция большего порядка малости по сравнению с каждой из функций f(x) и g(x) при x → 0. Пусть f(x) = cos x, g(x) = e¹/ˣ. Тогда f(x) * g(x) — бесконечно малая функция при x → 0− 0. Пусть f(x) = ³√x, g(x) = cos x. Тогда функция g(x)/f(x) имеет конечный предел при x → 0+ 0. Пусть f(x) = ³√x, g(x) = sin x. Тогда f(x) + g(x) — бесконечно малая функция при x → 0+ 0.

Solution

Let's go through each statement one by one to evaluate their correctness.

  1. First Statement: f(x)=cos(x),g(x)=x23. Then f(x)g(x) is an infinitesimal function as x0.f(x) = \cos(x), \quad g(x) = x^2 - 3. \text{ Then } f(x) \cdot g(x) \text{ is an infinitesimal function as } x \to 0^-. Here, as x0x \to 0^-, we have:

    • cos(0)=1\cos(0) = 1,
    • g(x)=x23g(x) = x^2 - 3 tends to 3-3.

    So, f(x)g(x)=1(3)=3f(x) \cdot g(x) = 1 \cdot (-3) = -3, which is a constant, not infinitesimal. Hence, this statement is false.

  2. Second Statement: f(x)=x31,g(x)=x3+1. Then f(x)g(x) is an infinitely large function as x1.f(x) = \sqrt[3]{x} - 1, \quad g(x) = x^3 + 1. \text{ Then } f(x) \cdot g(x) \text{ is an infinitely large function as } x \to 1^-. As x1x \to 1^-:

    • f(x)=x310f(x) = \sqrt[3]{x} - 1 \to 0,
    • g(x)=x3+12g(x) = x^3 + 1 \to 2.

    The product tends to 00, which contradicts the statement about being "infinitely large". Therefore, this statement is false.

  3. Third Statement: The difference f(x)=arcsin(x) and g(x)=x2 as x0 is an infinitesimal of higher order compared to both f(x) and g(x).\text{The difference } f(x) = \arcsin(x) \text{ and } g(x) = x^2 \text{ as } x \to 0 \text{ is an infinitesimal of higher order compared to both } f(x) \text{ and } g(x). As x0x \to 0:

    • f(x)=arcsin(x)xf(x) = \arcsin(x) \sim x,
    • g(x)=x2g(x) = x^2.

    The difference f(x)g(x)xx2f(x) - g(x) \sim x - x^2, and since x2x^2 tends to zero faster than xx, this means xx2x - x^2 is of the same order as f(x)f(x). Hence, this statement is false.

  4. Fourth Statement: f(x)=cos(x),g(x)=e1/x. Then f(x)g(x) is an infinitesimal function as x0.f(x) = \cos(x), \quad g(x) = e^{1/x}. \text{ Then } f(x) \cdot g(x) \text{ is an infinitesimal function as } x \to 0^-. As x0x \to 0^-:

    • f(x)=cos(0)=1f(x) = \cos(0) = 1,
    • g(x)=e1/x+g(x) = e^{1/x} \to +\infty.

    The product tends to infinity, not zero. Thus, this statement is false.

  5. Fifth Statement: f(x)=x3,g(x)=cos(x). The ratio g(x)f(x) has a finite limit as x0+.f(x) = \sqrt[3]{x}, \quad g(x) = \cos(x). \text{ The ratio } \frac{g(x)}{f(x)} \text{ has a finite limit as } x \to 0^+. As x0+x \to 0^+:

    • f(x)=x30f(x) = \sqrt[3]{x} \to 0,
    • g(x)=cos(0)=1g(x) = \cos(0) = 1.

    The ratio g(x)f(x)=cos(x)x3\frac{g(x)}{f(x)} = \frac{\cos(x)}{\sqrt[3]{x}} tends to infinity as x0+x \to 0^+. Hence, this statement is false.

  6. Sixth Statement: f(x)=x3,g(x)=sin(x). Then f(x)+g(x) is an infinitesimal function as x0+.f(x) = \sqrt[3]{x}, \quad g(x) = \sin(x). \text{ Then } f(x) + g(x) \text{ is an infinitesimal function as } x \to 0^+. As x0+x \to 0^+:

    • f(x)=x30f(x) = \sqrt[3]{x} \to 0,
    • g(x)=sin(0)=0g(x) = \sin(0) = 0.

    The sum tends to zero, which means it is an infinitesimal function. Hence, this statement is true.

Conclusion:

Only the sixth statement is correct.

Do you have any questions or need further explanation? Here are 5 related questions for deeper exploration:

  1. What is the concept of an infinitesimal function?
  2. How do you determine the behavior of functions as x0x \to 0?
  3. What is the difference between an infinitesimal and infinitely large function?
  4. Can you explain the difference between x0+x \to 0^+ and x0x \to 0^-?
  5. What is the order of infinitesimals, and how does it affect function comparison?

Tip: Always check the limit of a function carefully as xx approaches specific values to classify its behavior (infinitesimal, infinite, or finite).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Infinitesimal functions
Behavior of functions near singular points

Formulas

f(x) = cos(x), g(x) = e^(1/x)
f(x) = sqrt[3]{x}, g(x) = cos(x)

Theorems

Limit Theorem
Infinitesimal and Infinitely Large Functions
Order of infinitesimals

Suitable Grade Level

University-level (Advanced Calculus)