Math Problem Statement

Evaluate each of the following expressions given the function definitions for f , g , and h .

f ( x )

√ x + 4

g ( x )

3 x − 8

h ( x )

7 x

f ( g ( 4 ) )

Incorrect

g ( f ( 85 ) )

Incorrect

h ( g ( f ( 2 ) ) )

Incorrect

Solution

Let's evaluate each of the given expressions step-by-step using the provided function definitions:

  • f(x)=x+4f(x) = \sqrt{x} + 4
  • g(x)=3x8g(x) = 3x - 8
  • h(x)=7xh(x) = 7x

1. f(g(4))f(g(4))

First, we need to compute g(4)g(4): g(4)=3(4)8=128=4g(4) = 3(4) - 8 = 12 - 8 = 4

Now, substitute g(4)=4g(4) = 4 into f(x)f(x): f(4)=4+4=2+4=6f(4) = \sqrt{4} + 4 = 2 + 4 = 6

So, f(g(4))=6f(g(4)) = 6.

2. g(f(85))g(f(85))

First, compute f(85)f(85): f(85)=85+49.22+4=13.22f(85) = \sqrt{85} + 4 \approx 9.22 + 4 = 13.22

Now, substitute f(85)13.22f(85) \approx 13.22 into g(x)g(x): g(13.22)=3(13.22)8=39.668=31.66g(13.22) = 3(13.22) - 8 = 39.66 - 8 = 31.66

So, g(f(85))31.66g(f(85)) \approx 31.66.

3. h(g(f(2)))h(g(f(2)))

First, compute f(2)f(2): f(2)=2+41.41+4=5.41f(2) = \sqrt{2} + 4 \approx 1.41 + 4 = 5.41

Now, substitute f(2)5.41f(2) \approx 5.41 into g(x)g(x): g(5.41)=3(5.41)8=16.238=8.23g(5.41) = 3(5.41) - 8 = 16.23 - 8 = 8.23

Finally, substitute g(f(2))8.23g(f(2)) \approx 8.23 into h(x)h(x): h(8.23)=7(8.23)=57.61h(8.23) = 7(8.23) = 57.61

So, h(g(f(2)))57.61h(g(f(2))) \approx 57.61.

Final Results:

  • f(g(4))=6f(g(4)) = 6
  • g(f(85))31.66g(f(85)) \approx 31.66
  • h(g(f(2)))57.61h(g(f(2))) \approx 57.61

Would you like further details or have any questions?

Here are five related questions to expand on this:

  1. What is the domain of the function f(x)f(x)?
  2. How do function compositions affect the domain of the resulting function?
  3. Can you compute f(g(10))f(g(10)) using the same method?
  4. What happens if you reverse the composition, such as g(h(x))g(h(x))?
  5. What are the practical applications of function compositions?

Tip: Always check if the input to a function lies within its domain before computing its value!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Function Composition
Square Roots

Formulas

f(x) = √x + 4
g(x) = 3x - 8
h(x) = 7x
f(g(x)) = f(g(x))
g(f(x)) = g(f(x))
h(g(f(x))) = h(g(f(x)))

Theorems

-

Suitable Grade Level

Grades 9-12