Math Problem Statement
Misalkan f(x) = x^2 dan g(x) = √(x - 1). Tentukan komposisi fungsi (f ∘ g)(x) dan (g ∘ f)(x). Misalkan f(x) = x^2 - 3x, g(x) = 4 - √x + 2, dan h(x) = 2x/(x - 1). Tentukan komposisi fungsi (f ∘ g)(x), (g ∘ f)(x), (g ∘ h)(x), (h ∘ (g ∘ f))(x).
Solution
The image contains function composition problems. Let's solve each question step by step.
First Problem
Given:
- f(x)=x2
- g(x)=x−1
Questions:
- (f∘g)(x)
- (g∘f)(x)
Solutions:
-
(f∘g)(x):
- Composition means applying g(x) first and then f(x).
- (f∘g)(x)=f(g(x)).
- Substitute g(x): f(g(x))=f(x−1).
- Now apply f(x)=x2: f(x−1)=(x−1)2=x−1.
So, (f∘g)(x)=x−1.
-
(g∘f)(x):
- Composition means applying f(x) first and then g(x).
- (g∘f)(x)=g(f(x)).
- Substitute f(x): g(f(x))=g(x2).
- Now apply g(x)=x−1: g(x2)=x2−1.
So, (g∘f)(x)=x2−1.
Second Problem
Given:
- f(x)=x2−3x
- g(x)=4−x+2
- h(x)=x−12x
Questions:
- (f∘g)(x)
- (g∘f)(x)
- (g∘h)(x)
- (h∘(g∘f))(x)
Solutions:
-
(f∘g)(x):
- (f∘g)(x)=f(g(x)).
- Substitute g(x): f(g(x))=f(4−x+2)=f(6−x).
- Now apply f(x)=x2−3x:
f(6−x)=(6−x)2−3(6−x).
- Expand and simplify:
(6−x)2=36−12x+x,
and
−3(6−x)=−18+3x.
So,
f(6−x)=36−12x+x−18+3x=x−9x+18.
So, (f∘g)(x)=x−9x+18.
-
(g∘f)(x):
- (g∘f)(x)=g(f(x)).
- Substitute f(x): g(f(x))=g(x2−3x).
- Now apply g(x)=4−x+2:
g(x2−3x)=4−x2−3x+2=6−x2−3x.
So, (g∘f)(x)=6−x2−3x.
-
(g∘h)(x):
- (g∘h)(x)=g(h(x)).
- Substitute h(x): g(h(x))=g(x−12x).
- Apply g(x)=4−x+2:
g(x−12x)=6−x−12x.
So, (g∘h)(x)=6−x−12x.
-
(h∘(g∘f))(x):
- First find (g∘f)(x): 6−x2−3x.
- Now, h((g∘f)(x))=h(6−x2−3x).
- Apply h(x)=x−12x:
h(6−x2−3x)=(6−x2−3x)−12(6−x2−3x).
So, (h∘(g∘f))(x)=(6−x2−3x)−12(6−x2−3x).
Would you like more details or have any questions?
Related Questions
- How do you simplify compositions of functions involving radicals?
- What are the properties of function compositions?
- How do you handle domain restrictions in function compositions?
- How to graph the compositions of these functions?
- How can compositions be used in real-world applications?
Tip: Always check the domain of each function and the composed function to ensure they are valid for all given values.