Math Problem Statement

This list of 16 random numbers has been sorted:

21 21 21 24 25 30 35 38 41 41 42 43 47 47 53 54

Fill in this table with the frequencies as whole numbers and the relative frequencies as decimals with 4 decimal places for the relative frequencies. (This problem does not accept fractions.) Remember: relative frequencies are between 0.0 and 1.0

Class Frequency Rel.Freq 20-29 5 Correct 0.3125 Correct 30-39 2 Incorrect 0.1250 Incorrect 40-49 7 Incorrect 0.4375 Incorrect 50-59 2 Correct 0.1250 Correct

Solution

Let's go through the problem step by step and ensure all frequencies and relative frequencies are correct.

Data Set:

  • 21, 21, 21, 24, 25, 30, 35, 38, 41, 41, 42, 43, 47, 47, 53, 54

Step 1: Frequency Count for Each Class

  • Class 20-29: The numbers in this class are 21, 21, 21, 24, 25.

    • Frequency: 5 (already correct)
  • Class 30-39: The numbers in this class are 30, 35, 38.

    • Frequency: 3 (the previous entry of 2 is incorrect)
  • Class 40-49: The numbers in this class are 41, 41, 42, 43, 47, 47.

    • Frequency: 6 (the previous entry of 7 is incorrect)
  • Class 50-59: The numbers in this class are 53, 54.

    • Frequency: 2 (already correct)

Step 2: Total Frequency

Sum of frequencies:
5+3+6+2=165 + 3 + 6 + 2 = 16

Step 3: Calculating Relative Frequencies

To find the relative frequency, divide each class's frequency by the total frequency (16) and round to four decimal places.

  • Class 20-29:
    Rel. Freq=516=0.3125\text{Rel. Freq} = \frac{5}{16} = 0.3125 (correct)

  • Class 30-39:
    Rel. Freq=316=0.1875\text{Rel. Freq} = \frac{3}{16} = 0.1875 (previous answer of 0.1250 was incorrect)

  • Class 40-49:
    Rel. Freq=616=0.3750\text{Rel. Freq} = \frac{6}{16} = 0.3750 (previous answer of 0.4375 was incorrect)

  • Class 50-59:
    Rel. Freq=216=0.1250\text{Rel. Freq} = \frac{2}{16} = 0.1250 (correct)

Final Table:

ClassFrequencyRel. Freq
20-2950.3125
30-3930.1875
40-4960.3750
50-5920.1250

Would you like further details or have any other questions?

Here are 5 related questions to expand your understanding:

  1. How do you calculate cumulative frequency?
  2. What is the sum of all relative frequencies in this table?
  3. What is the mode of the original data set?
  4. How would the frequency distribution change if the classes were in intervals of 10?
  5. How would you find the median of the data set?

Tip: Relative frequencies are a great way to compare data distributions of different sizes, as they normalize the frequencies into proportions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Frequency Distribution
Relative Frequency

Formulas

Relative Frequency = Frequency of Class / Total Frequency

Theorems

Basic statistical concepts related to frequency distributions

Suitable Grade Level

Grades 6-8