Math Problem Statement

A battery is constructed as follows: Ag(s), AgNO3 (0.1 M), HNO3 (pH 2), O2 (g, 1 bar)

Calculate the free energy of the reaction at 25˚C (Treat H2O as a solvent)

Solution

To calculate the free energy (ΔG\Delta G) of the reaction at 25°C, we can proceed as follows:


Step 1: Identify the half-reactions and standard potentials

The battery components indicate the following half-reactions:

  1. Oxygen reduction reaction at the cathode: O2(g)+4H++4e2H2O\text{O}_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O Standard electrode potential (EE^\circ): +1.23V+1.23 \, \text{V}.

  2. Silver oxidation reaction at the anode: Ag++eAg(s)\text{Ag}^+ + e^- \rightarrow \text{Ag}(s) Standard electrode potential (EE^\circ): +0.80V+0.80 \, \text{V}.

The overall cell reaction combines these half-reactions: 2Ag(s)+2H++O2(g)2Ag++2H2O(l)2\text{Ag}(s) + 2H^+ + \text{O}_2(g) \rightarrow 2\text{Ag}^+ + 2H_2O(l)


Step 2: Calculate the cell potential

The standard cell potential is given by: Ecell=EcathodeEanodeE^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} Substitute values: Ecell=1.23V0.80V=0.43VE^\circ_{\text{cell}} = 1.23 \, \text{V} - 0.80 \, \text{V} = 0.43 \, \text{V}

Now, incorporate the Nernst equation to account for non-standard conditions.

The Nernst equation:

Ecell=EcellRTnFlnQE_{\text{cell}} = E^\circ_{\text{cell}} - \frac{RT}{nF} \ln Q

  • R=8.314J/mol\cdotpKR = 8.314 \, \text{J/mol·K}, universal gas constant.
  • T=298KT = 298 \, \text{K}, temperature.
  • n=4n = 4, number of electrons transferred.
  • F=96485C/molF = 96485 \, \text{C/mol}, Faraday's constant.
  • QQ, reaction quotient: [ Q = \frac{[\text{Ag}^+]^2}{[H^+]^2 \cdot P_{\text{O}_2}} ]

Concentrations and partial pressures:

  • [H+]=10pH=102M[H^+] = 10^{-\text{pH}} = 10^{-2} \, \text{M},
  • [Ag+]=0.1M[\text{Ag}^+] = 0.1 \, \text{M},
  • PO2=1barP_{\text{O}_2} = 1 \, \text{bar}.

Thus: Q=(0.1)2(102)21=0.010.0001=100Q = \frac{(0.1)^2}{(10^{-2})^2 \cdot 1} = \frac{0.01}{0.0001} = 100

Substitute into the Nernst equation: Ecell=0.438.314298496485ln100E_{\text{cell}} = 0.43 - \frac{8.314 \cdot 298}{4 \cdot 96485} \ln 100

First, calculate the temperature term: 8.314298496485=0.00643\frac{8.314 \cdot 298}{4 \cdot 96485} = 0.00643

Now compute the logarithm term: ln100=4.605\ln 100 = 4.605

Substitute back: Ecell=0.430.006434.605E_{\text{cell}} = 0.43 - 0.00643 \cdot 4.605 Ecell=0.430.0296=0.4004VE_{\text{cell}} = 0.43 - 0.0296 = 0.4004 \, \text{V}


Step 3: Calculate the free energy

The relationship between free energy (ΔG\Delta G) and cell potential is: ΔG=nFEcell\Delta G = -nFE_{\text{cell}}

Substitute values: ΔG=4964850.4004\Delta G = -4 \cdot 96485 \cdot 0.4004 ΔG=154451J/mol=154.45kJ/mol\Delta G = -154451 \, \text{J/mol} = -154.45 \, \text{kJ/mol}


Final Answer:

The free energy of the reaction at 25°C is: ΔG=154.45kJ/mol\Delta G = -154.45 \, \text{kJ/mol}


Do you want further details or have any questions?
Here are 5 related questions to deepen your understanding:

  1. How does the pH influence the reaction quotient (QQ) and cell potential?
  2. What happens to ΔG\Delta G if the concentration of Ag+\text{Ag}^+ changes?
  3. How does temperature affect the cell potential and ΔG\Delta G?
  4. Can this battery produce electrical energy if Ecell0E_{\text{cell}} \leq 0?
  5. Why is n=4n = 4 used in this calculation?

Tip: Always check if the reaction quotient (QQ) is dimensionless and use consistent units when calculating ΔG\Delta G.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Electrochemistry
Thermodynamics
Nernst Equation
Free Energy Calculation

Formulas

Standard Cell Potential: E^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode}
Nernst Equation: E_{cell} = E^\circ_{cell} - \frac{RT}{nF} \ln Q
Free Energy: \Delta G = -nFE_{cell}

Theorems

Nernst Equation
Gibbs Free Energy

Suitable Grade Level

University Level (Chemistry/Physics)