Math Problem Statement

  1. The expansion of the periodic function f(x) in a sine-cosine Fourier series is:

f(x)= 1 2 + 2 pi ( (sin 2x)/2 + (sin 3x)/3 +***)

b. f(x)= 8 pi ( (sin x)/1 + (sin 3x)/3 +***)

f(x)= 1 2 + 2 pi ( (cinx)/1 + coxx 1 ++***)

f(x)= 1 2 + 2 pi ( (corpix)/1 - (cos 3pix)/3 +**)

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Series
Sine-Cosine Expansion
Periodic Functions

Formulas

f(x) = a_0/2 + Σ (a_n cos(nx) + b_n sin(nx))
Fourier sine and cosine series expansion

Theorems

Fourier Theorem for Periodic Functions

Suitable Grade Level

University level