Math Problem Statement

Laske vektorikentän H = x^2i + y^2j + z^2k vuo kuution pinnan yli S, kun kuution nurkka on origossa, sivujen pituus 1 ja sivut ovat koordinaattiakselien suuntaisia (muut nurkat pisteissä (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1), (0,1,1) ja (1,1,1)).

Solution

We are tasked to compute the flux of the vector field H=x2i+y2j+z2k\mathbf{H} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k} through the surface SS of a cube with corners at (0,0,0)(0,0,0) and (1,1,1)(1,1,1), meaning it has side lengths of 1 and its faces are aligned with the coordinate axes.

The flux through the surface SS is given by the surface integral:

SHdA\iint_S \mathbf{H} \cdot \mathbf{dA}


Solution Steps

1. Gauss's Divergence Theorem

The divergence theorem allows us to convert a surface integral to a volume integral over the cube. Mathematically,

SHdA=VHdV\iint_S \mathbf{H} \cdot \mathbf{dA} = \iiint_V \nabla \cdot \mathbf{H} \, dV

Here:

  • VV is the volume enclosed by the surface SS,
  • H\nabla \cdot \mathbf{H} is the divergence of H\mathbf{H}.

2. Calculate the Divergence H\nabla \cdot \mathbf{H}

The vector field H\mathbf{H} is given as:

H=x2i+y2j+z2k\mathbf{H} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}

The divergence of H\mathbf{H} is:

H=x(x2)+y(y2)+z(z2)\nabla \cdot \mathbf{H} = \frac{\partial}{\partial x} (x^2) + \frac{\partial}{\partial y} (y^2) + \frac{\partial}{\partial z} (z^2)

Computing each term:

  • x(x2)=2x\frac{\partial}{\partial x} (x^2) = 2x,
  • y(y2)=2y\frac{\partial}{\partial y} (y^2) = 2y,
  • z(z2)=2z\frac{\partial}{\partial z} (z^2) = 2z.

Thus,

H=2x+2y+2z.\nabla \cdot \mathbf{H} = 2x + 2y + 2z.


3. Set Up the Volume Integral

The volume integral over the cube 0x,y,z10 \leq x, y, z \leq 1 is:

VHdV=V(2x+2y+2z)dV.\iiint_V \nabla \cdot \mathbf{H} \, dV = \iiint_V (2x + 2y + 2z) \, dV.

Split the integral into three parts:

V(2x+2y+2z)dV=2VxdV+2VydV+2VzdV.\iiint_V (2x + 2y + 2z) \, dV = 2 \iiint_V x \, dV + 2 \iiint_V y \, dV + 2 \iiint_V z \, dV.

The region VV is the cube 0x,y,z10 \leq x, y, z \leq 1. The integral of xx, yy, or zz over this cube is:

010101xdxdydz=01xdx01dy01dz.\int_0^1 \int_0^1 \int_0^1 x \, dx \, dy \, dz = \int_0^1 x \, dx \cdot \int_0^1 dy \cdot \int_0^1 dz.

Each component evaluates as follows:

  • 01xdx=x2201=12\int_0^1 x \, dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2},
  • 01dy=1\int_0^1 dy = 1,
  • 01dz=1\int_0^1 dz = 1.

Thus,

VxdV=12,VydV=12,VzdV=12.\iiint_V x \, dV = \frac{1}{2}, \quad \iiint_V y \, dV = \frac{1}{2}, \quad \iiint_V z \, dV = \frac{1}{2}.


4. Combine the Results

Now summing up the contributions:

V(2x+2y+2z)dV=2(12)+2(12)+2(12).\iiint_V (2x + 2y + 2z) \, dV = 2 \left( \frac{1}{2} \right) + 2 \left( \frac{1}{2} \right) + 2 \left( \frac{1}{2} \right).

Simplify:

V(2x+2y+2z)dV=232=3.\iiint_V (2x + 2y + 2z) \, dV = 2 \cdot \frac{3}{2} = 3.


Final Answer:

The flux of the vector field H\mathbf{H} through the surface SS of the cube is:

3.\boxed{3}.


Do you need further clarification or details? Let me know!

Here are 5 related questions to explore further:

  1. How is Gauss's divergence theorem applied to other vector fields?
  2. What is the physical interpretation of flux in vector fields?
  3. How would the result change if the vector field H\mathbf{H} had an additional component?
  4. Can the flux be computed directly via surface integrals for each face of the cube?
  5. What happens if the domain VV is a sphere instead of a cube?

Tip: Gauss's theorem simplifies surface integrals greatly when symmetry and enclosed volumes are involved!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Surface Integrals
Divergence Theorem

Formulas

Flux integral: ∫∫_S H · dA
Divergence theorem: ∫∫_S H · dA = ∫∫∫_V (∇ · H) dV
Divergence of H: ∇ · H = ∂(H_x)/∂x + ∂(H_y)/∂y + ∂(H_z)/∂z

Theorems

Gauss's Divergence Theorem

Suitable Grade Level

Undergraduate Calculus Level