Math Problem Statement

COMPUTE THE FIRST DERIVATE: f(x)=((2-x)^2). ((x^3)+2x)

Solution

To compute the first derivative of the function f(x)=((2x)2)(x3+2x)f(x) = ((2-x)^2) \cdot (x^3 + 2x), we will apply the product rule along with the chain rule.

Step 1: Apply the product rule

The product rule states: ddx[u(x)v(x)]=u(x)v(x)+u(x)v(x)\frac{d}{dx} \left[ u(x) \cdot v(x) \right] = u'(x) \cdot v(x) + u(x) \cdot v'(x) Here, we identify:

  • u(x)=(2x)2u(x) = (2 - x)^2
  • v(x)=x3+2xv(x) = x^3 + 2x

Now, we'll differentiate u(x)u(x) and v(x)v(x) separately.

Step 2: Differentiate u(x)=(2x)2u(x) = (2 - x)^2

Using the chain rule, we differentiate u(x)u(x): u(x)=2(2x)(1)=2(2x)u'(x) = 2 \cdot (2 - x) \cdot (-1) = -2(2 - x) So, u(x)=2(2x)u'(x) = -2(2 - x).

Step 3: Differentiate v(x)=x3+2xv(x) = x^3 + 2x

The derivative of v(x)v(x) is: v(x)=ddx(x3)+ddx(2x)=3x2+2v'(x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(2x) = 3x^2 + 2

Step 4: Apply the product rule

Now that we have u(x)u'(x) and v(x)v'(x), we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) Substituting the values: f(x)=[2(2x)](x3+2x)+(2x)2(3x2+2)f'(x) = [-2(2 - x)] \cdot (x^3 + 2x) + (2 - x)^2 \cdot (3x^2 + 2)

Step 5: Simplify the expression

Now let's expand each term.

  1. For [2(2x)](x3+2x)[-2(2 - x)] \cdot (x^3 + 2x): 2(2x)(x3+2x)=2(2x3+4xx42x2)-2(2 - x)(x^3 + 2x) = -2(2x^3 + 4x - x^4 - 2x^2) Simplifying: =2x44x2+4x3+8x= -2x^4 - 4x^2 + 4x^3 + 8x

  2. For (2x)2(3x2+2)(2 - x)^2 \cdot (3x^2 + 2): (2x)2=44x+x2(2 - x)^2 = 4 - 4x + x^2 Now multiply: (44x+x2)(3x2+2)=12x212x3+3x4+88x+2x2(4 - 4x + x^2)(3x^2 + 2) = 12x^2 - 12x^3 + 3x^4 + 8 - 8x + 2x^2 Simplifying: =3x412x3+14x28x+8= 3x^4 - 12x^3 + 14x^2 - 8x + 8

Step 6: Combine the results

Now, we combine both parts: f(x)=(2x44x2+4x3+8x)+(3x412x3+14x28x+8)f'(x) = (-2x^4 - 4x^2 + 4x^3 + 8x) + (3x^4 - 12x^3 + 14x^2 - 8x + 8) Simplifying the final expression: f(x)=x48x3+10x2+0x+8f'(x) = x^4 - 8x^3 + 10x^2 + 0x + 8 So, the derivative is: f(x)=x48x3+10x2+8f'(x) = x^4 - 8x^3 + 10x^2 + 8

This is the first derivative of the given function.

Would you like any further details or clarifications? Here are some related questions:

  1. How is the product rule applied in other scenarios?
  2. What happens if you change the powers in f(x)f(x)?
  3. Can we analyze the critical points of f(x)f(x)?
  4. How does the chain rule influence this solution?
  5. What happens to the behavior of the graph for higher powers of xx?

Tip: Always simplify carefully after applying rules to avoid errors when combining terms!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Product Rule
Chain Rule

Formulas

Product Rule: d/dx[u(x) * v(x)] = u'(x) * v(x) + u(x) * v'(x)
Chain Rule: d/dx[f(g(x))] = f'(g(x)) * g'(x)

Theorems

Product Rule
Chain Rule

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus