Math Problem Statement

kerjakan

Tentukan turunan pertama dari: a. y(x) = 6x^2 - 10x - 5x^-2, b. r(s) = 1/s^3 - 5/2s, c. y(x) = (3 - x^2)(x^3 - x + 1), d. z(x) = (4 - 3x)/(3x^2 + x)

Solution

Let's solve the derivatives step by step:

a. y(x)=6x210x5x2y(x) = 6x^2 - 10x - 5x^{-2}

Take the derivative term by term: dydx=ddx(6x2)ddx(10x)ddx(5x2)\frac{dy}{dx} = \frac{d}{dx}(6x^2) - \frac{d}{dx}(10x) - \frac{d}{dx}(5x^{-2}) dydx=12x10+10x3\frac{dy}{dx} = 12x - 10 + 10x^{-3}

Result for (a):
dydx=12x10+10x3\boxed{\frac{dy}{dx} = 12x - 10 + \frac{10}{x^3}}


b. r(s)=1s352sr(s) = \frac{1}{s^3} - \frac{5}{2s}

Differentiate each term: drds=dds(s3)dds(52s1)\frac{dr}{ds} = \frac{d}{ds}(s^{-3}) - \frac{d}{ds}\left(\frac{5}{2}s^{-1}\right) drds=3s4+52s2\frac{dr}{ds} = -3s^{-4} + \frac{5}{2}s^{-2}

Result for (b):
drds=3s4+52s2\boxed{\frac{dr}{ds} = -\frac{3}{s^4} + \frac{5}{2s^2}}


c. y(x)=(3x2)(x3x+1)y(x) = (3 - x^2)(x^3 - x + 1)

Use the product rule: (uv)=uv+uv(uv)' = u'v + uv', where u=(3x2)u = (3 - x^2) and v=(x3x+1)v = (x^3 - x + 1).
First, compute derivatives of uu and vv:
u=ddx(3x2)=2x,v=ddx(x3x+1)=3x21u' = \frac{d}{dx}(3 - x^2) = -2x, \quad v' = \frac{d}{dx}(x^3 - x + 1) = 3x^2 - 1 Apply the product rule: dydx=uv+uv\frac{dy}{dx} = u'v + uv' dydx=(2x)(x3x+1)+(3x2)(3x21)\frac{dy}{dx} = (-2x)(x^3 - x + 1) + (3 - x^2)(3x^2 - 1) Simplify: dydx=2x4+2x22x+9x23x43x2+x2\frac{dy}{dx} = -2x^4 + 2x^2 - 2x + 9x^2 - 3x^4 - 3x^2 + x^2 dydx=5x4+9x22x\frac{dy}{dx} = -5x^4 + 9x^2 - 2x

Result for (c):
dydx=5x4+9x22x\boxed{\frac{dy}{dx} = -5x^4 + 9x^2 - 2x}


d. z(x)=43x3x2+xz(x) = \frac{4 - 3x}{3x^2 + x}

Use the quotient rule:
(fg)=fgfgg2\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} Here, f=43xf = 4 - 3x and g=3x2+xg = 3x^2 + x.
Compute derivatives of ff and gg:
f=ddx(43x)=3,g=ddx(3x2+x)=6x+1f' = \frac{d}{dx}(4 - 3x) = -3, \quad g' = \frac{d}{dx}(3x^2 + x) = 6x + 1 Apply the quotient rule: dzdx=(3)(3x2+x)(43x)(6x+1)(3x2+x)2\frac{dz}{dx} = \frac{(-3)(3x^2 + x) - (4 - 3x)(6x + 1)}{(3x^2 + x)^2} Simplify the numerator: (3)(3x2+x)=9x23x(-3)(3x^2 + x) = -9x^2 - 3x (43x)(6x+1)=24x+418x23x=18x2+21x+4(4 - 3x)(6x + 1) = 24x + 4 - 18x^2 - 3x = -18x^2 + 21x + 4 Numerator: 9x23x(18x2+21x+4)=9x224x4\text{Numerator: } -9x^2 - 3x - (-18x^2 + 21x + 4) = 9x^2 - 24x - 4 Thus: dzdx=9x224x4(3x2+x)2\frac{dz}{dx} = \frac{9x^2 - 24x - 4}{(3x^2 + x)^2}

Result for (d):
dzdx=9x224x4(3x2+x)2\boxed{\frac{dz}{dx} = \frac{9x^2 - 24x - 4}{(3x^2 + x)^2}}


Let me know if you want detailed steps for any specific derivative!

Related Questions:

  1. How does the product rule apply when three terms are multiplied?
  2. What is the general rule for differentiating a quotient?
  3. How do we handle derivatives involving fractional exponents?
  4. How can implicit differentiation be applied to these types of problems?
  5. Can higher-order derivatives be computed for these functions?

Tip:

Always simplify each step in differentiation carefully to avoid errors, especially when using the product and quotient rules.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Product Rule
Quotient Rule
Power Rule

Formulas

Power Rule: d/dx[x^n] = n*x^(n-1)
Product Rule: (u*v)' = u'*v + u*v'
Quotient Rule: (u/v)' = (u'*v - u*v')/v^2

Theorems

Rules of Differentiation

Suitable Grade Level

Grades 11-12