Math Problem Statement

2.Let A and B be two matrices of same order 3 x 3 where A=[(1,3, λ+2),(2,4,8),(3,5,10)] B=[(3,2,4),(3,2,5),(2,1,4)]. If matrix (2A+3B) is singular then find the value of 2λ?

Solution

To solve the problem, we need to find the value of 2λ2\lambda given that the matrix (2A+3B)(2A + 3B) is singular. Here's the step-by-step solution:

Step 1: Calculate 2A2A and 3B3B

Given:

B = \begin{pmatrix} 3 & 2 & 4 \\ 3 & 2 & 5 \\ 2 & 1 & 4 \end{pmatrix}$$ First, calculate $$2A$$: $$2A = 2 \times A = 2 \times \begin{pmatrix} 1 & 3 & \lambda + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 2\lambda + 4 \\ 4 & 8 & 16 \\ 6 & 10 & 20 \end{pmatrix}$$ Next, calculate $$3B$$: $$3B = 3 \times B = 3 \times \begin{pmatrix} 3 & 2 & 4 \\ 3 & 2 & 5 \\ 2 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 9 & 6 & 12 \\ 9 & 6 & 15 \\ 6 & 3 & 12 \end{pmatrix}$$ ### Step 2: Calculate $$2A + 3B$$ Now, add the matrices $$2A$$ and $$3B$$: $$2A + 3B = \begin{pmatrix} 2 & 6 & 2\lambda + 4 \\ 4 & 8 & 16 \\ 6 & 10 & 20 \end{pmatrix} + \begin{pmatrix} 9 & 6 & 12 \\ 9 & 6 & 15 \\ 6 & 3 & 12 \end{pmatrix} = \begin{pmatrix} 11 & 12 & 2\lambda + 16 \\ 13 & 14 & 31 \\ 12 & 13 & 32 \end{pmatrix}$$ ### Step 3: Determine the determinant of $$2A + 3B$$ Since $$2A + 3B$$ is singular, its determinant must be zero: $$\text{Determinant of } (2A + 3B) = \begin{vmatrix} 11 & 12 & 2\lambda + 16 \\ 13 & 14 & 31 \\ 12 & 13 & 32 \end{vmatrix} = 0$$ Calculate the determinant using cofactor expansion: $$\text{Determinant} = 11 \times \begin{vmatrix} 14 & 31 \\ 13 & 32 \end{vmatrix} - 12 \times \begin{vmatrix} 13 & 31 \\ 12 & 32 \end{vmatrix} + (2\lambda + 16) \times \begin{vmatrix} 13 & 14 \\ 12 & 13 \end{vmatrix}$$ First, calculate the minor determinants: $$\begin{vmatrix} 14 & 31 \\ 13 & 32 \end{vmatrix} = (14 \times 32) - (31 \times 13) = 448 - 403 = 45$$ $$\begin{vmatrix} 13 & 31 \\ 12 & 32 \end{vmatrix} = (13 \times 32) - (31 \times 12) = 416 - 372 = 44$$ $$\begin{vmatrix} 13 & 14 \\ 12 & 13 \end{vmatrix} = (13 \times 13) - (14 \times 12) = 169 - 168 = 1$$ Now substitute back into the determinant expression: $$\text{Determinant} = 11 \times 45 - 12 \times 44 + (2\lambda + 16) \times 1 = 495 - 528 + 2\lambda + 16 = 2\lambda - 17$$ ### Step 4: Solve for $$\lambda$$ Since the determinant must be zero for the matrix to be singular: $$2\lambda - 17 = 0$$ $$2\lambda = 17$$ Thus, the value of $$2\lambda$$ is $$\boxed{17}$$. Would you like more details on any of the steps? Here are some related questions for further exploration: 1. How do you determine if a matrix is singular? 2. What is the cofactor expansion method for calculating determinants? 3. Can you generalize the determinant calculation for $$n \times n$$ matrices? 4. What are some properties of determinants that can simplify calculations? 5. How does the determinant relate to the invertibility of a matrix? **Tip:** Always check the determinant value when determining whether a matrix is singular—it must be zero for the matrix to be singular.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Determinants
Singular Matrices

Formulas

Determinant calculation using cofactor expansion

Theorems

-

Suitable Grade Level

Advanced High School or College