Math Problem Statement

Given r(t) = sin(4t)i + ln(t)j + 2te^(-9t)k, find r''(t).

Solution

The given vector function is:

r(t)=sin(4t)i+ln(t)j+2te9tk\mathbf{r}(t) = \sin(4t) \, \mathbf{i} + \ln(t) \, \mathbf{j} + 2te^{-9t} \, \mathbf{k}

To find the second derivative, r(t)\mathbf{r}''(t), we need to first find the first derivative r(t)\mathbf{r}'(t) and then differentiate again to obtain r(t)\mathbf{r}''(t).

Step 1: First derivative r(t)\mathbf{r}'(t)

Differentiate each component of r(t)\mathbf{r}(t) with respect to tt:

  1. sin(4t)i\sin(4t) \, \mathbf{i} ddt[sin(4t)]=4cos(4t)i\frac{d}{dt} [\sin(4t)] = 4\cos(4t) \, \mathbf{i}

  2. ln(t)j\ln(t) \, \mathbf{j} ddt[ln(t)]=1tj\frac{d}{dt} [\ln(t)] = \frac{1}{t} \, \mathbf{j}

  3. 2te9tk2te^{-9t} \, \mathbf{k} Using the product rule: [ \frac{d}{dt} [2te^{-9t}] = 2 \cdot \frac{d}{dt}[t] \cdot e^{-9t} + 2t \cdot \frac{d}{dt}[e^{-9t}] ] =2e9t+2t(9e9t)=2e9t18te9tk= 2e^{-9t} + 2t(-9e^{-9t}) = 2e^{-9t} - 18te^{-9t} \, \mathbf{k}

Thus, the first derivative is: r(t)=4cos(4t)i+1tj+(2e9t18te9t)k\mathbf{r}'(t) = 4\cos(4t) \, \mathbf{i} + \frac{1}{t} \, \mathbf{j} + (2e^{-9t} - 18te^{-9t}) \, \mathbf{k}

Step 2: Second derivative r(t)\mathbf{r}''(t)

Now differentiate each component of r(t)\mathbf{r}'(t) again:

  1. 4cos(4t)i4\cos(4t) \, \mathbf{i} ddt[4cos(4t)]=16sin(4t)i\frac{d}{dt} [4\cos(4t)] = -16\sin(4t) \, \mathbf{i}

  2. 1tj\frac{1}{t} \, \mathbf{j} ddt[1t]=1t2j\frac{d}{dt} \left[\frac{1}{t}\right] = -\frac{1}{t^2} \, \mathbf{j}

  3. 2e9t18te9tk2e^{-9t} - 18te^{-9t} \, \mathbf{k} Using the product rule on 18te9t-18te^{-9t}: ddt[2e9t]=18e9t\frac{d}{dt} [2e^{-9t}] = -18e^{-9t} ddt[18te9t]=18e9t+162te9t\frac{d}{dt} [-18te^{-9t}] = -18e^{-9t} + 162te^{-9t} So, the derivative of 2e9t18te9t2e^{-9t} - 18te^{-9t} is: (18e9t)+(18e9t+162te9t)=36e9t+162te9tk(-18e^{-9t}) + (-18e^{-9t} + 162te^{-9t}) = -36e^{-9t} + 162te^{-9t} \, \mathbf{k}

Thus, the second derivative is: r(t)=16sin(4t)i1t2j+(36e9t+162te9t)k\mathbf{r}''(t) = -16\sin(4t) \, \mathbf{i} - \frac{1}{t^2} \, \mathbf{j} + (-36e^{-9t} + 162te^{-9t}) \, \mathbf{k}

Final Answer:

r(t)=16sin(4t)i1t2j+(36e9t+162te9t)k\mathbf{r}''(t) = -16\sin(4t) \, \mathbf{i} - \frac{1}{t^2} \, \mathbf{j} + (-36e^{-9t} + 162te^{-9t}) \, \mathbf{k}

Let me know if you need further clarification, or if you'd like more details on any step!


Here are 5 questions that build on this information:

  1. How do we apply the product rule when differentiating vector functions?
  2. What is the significance of the second derivative in the context of a position vector?
  3. How does the exponential decay in the k\mathbf{k}-component affect the behavior of the function as tt increases?
  4. What is the geometrical interpretation of r(t)\mathbf{r}(t) and r(t)\mathbf{r}''(t)?
  5. How would the calculation change if r(t)\mathbf{r}(t) were defined in terms of e4te^{4t} instead of ln(t)\ln(t)?

Tip: When differentiating vector functions, treat each component separately, applying the rules for differentiation as you would for scalar functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Differentiation of Vector Functions

Formulas

Product Rule
Chain Rule
Logarithmic Differentiation

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

College Level Calculus