Math Problem Statement

  1. (1 + 𝑖)^10 નો વાƨતિવક ભાગ શોધો.

Solution

પ્રશ્ન છે: (1+i)10(1 + i)^{10} નો વાસ્તવિક ભાગ શોધો.

સમાધાન:

પ્રથમ, 1+i1 + i ને ધ્રુવીય સ્વરૂપમાં રૂપાંતરિત કરીએ.

  1. સત્તાધી રૂપ (Polar form) માટે 1+i1 + i:

    • માપ (Magnitude): r=1+i=12+12=2r = |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}

    • કોણ (Argument, θ\theta): θ=tan1(11)=π4\theta = \tan^{-1} \left( \frac{1}{1} \right) = \frac{\pi}{4}

    તેથી 1+i1 + i નો ધ્રુવીય રૂપ છે: 1+i=2(cosπ4+isinπ4)1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)

  2. દશમા ઘાત માટે:

    હવે (1+i)10(1 + i)^{10} નું ધ્રુવીય સ્વરૂપ કાઢીએ: (1+i)10=(2)10(cos(10π4)+isin(10π4))(1 + i)^{10} = \left( \sqrt{2} \right)^{10} \left( \cos \left( 10 \cdot \frac{\pi}{4} \right) + i \sin \left( 10 \cdot \frac{\pi}{4} \right) \right)

    • (2)10=25=32\left( \sqrt{2} \right)^{10} = 2^5 = 32
    • 10π4=10π4=5π210 \cdot \frac{\pi}{4} = \frac{10\pi}{4} = \frac{5\pi}{2}

    હવે 5π2\frac{5\pi}{2} ને 2π2\pi ના ગુણકમાં લાવીશું: 5π2=2π+π2\frac{5\pi}{2} = 2\pi + \frac{\pi}{2} તેથી: cos5π2=cosπ2=0\cos \frac{5\pi}{2} = \cos \frac{\pi}{2} = 0 sin5π2=sinπ2=1\sin \frac{5\pi}{2} = \sin \frac{\pi}{2} = 1

    હવે આ મૂલ્યને મૂકીએ: (1+i)10=32(cosπ2+isinπ2)=32(0+i1)=32i(1 + i)^{10} = 32 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = 32 (0 + i \cdot 1) = 32i

  3. વાસ્તવિક ભાગ: 32i32i માં વાસ્તવિક ભાગ છે 00.

અંતિમ ઉત્તર:

(1+i)10(1 + i)^{10} નો વાસ્તવિક ભાગ 0 છે.


Do you want more details or have any questions?

Additional Questions:

  1. What is the general method to find the imaginary part of a complex number raised to a power?
  2. How can De Moivre's Theorem be used in complex number calculations?
  3. Why does the real part of (1+i)10(1 + i)^{10} turn out to be zero?
  4. What is the geometric interpretation of raising a complex number to a power?
  5. How would the result differ if we were asked for the imaginary part instead?

Tip: Always simplify the angle in terms of 2π2\pi to make calculations easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Exponents

Formulas

r = |a + bi| = √(a^2 + b^2)
Argument θ = tan^(-1)(b/a)
De Moivre's Theorem: (r * (cos θ + i * sin θ))^n = r^n * (cos(nθ) + i * sin(nθ))

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 11-12 or College Level