Math Problem Statement

(-1-I)^9 + (-4+2I)^6

Solution

To solve (1i)9+(4+2i)6,(-1 - i)^9 + (-4 + 2i)^6, we can break it into two parts and evaluate each complex number raised to the respective powers.

Part 1: (1i)9(-1 - i)^9

  1. Convert to polar form: Let z=1iz = -1 - i.

    • The modulus z=(1)2+(1)2=2|z| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}.
    • The argument θ=tan1(11)=3π4\theta = \tan^{-1} \left( \frac{-1}{-1} \right) = -\frac{3\pi}{4}.

    So, in polar form: z=2cis(3π4),z = \sqrt{2} \text{cis} \left( -\frac{3\pi}{4} \right), where cis(θ)=cos(θ)+isin(θ)\text{cis}(\theta) = \cos(\theta) + i \sin(\theta).

  2. Apply De Moivre's Theorem: [ (-1 - i)^9 = \left( \sqrt{2} \right)^9 \text{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Exponentiation
Polar Form
De Moivre's Theorem

Formulas

z = r * cis(θ)
z^n = r^n * cis(nθ)

Theorems

De Moivre's Theorem

Suitable Grade Level

Undergraduate Mathematics or Advanced High School