Math Problem Statement

if A:B = 2:3 and 2B:C =8:5 then A:C=?

Solution

We are given the ratios A:B=2:3A:B = 2:3 and 2B:C=8:52B:C = 8:5. Let's find the ratio A:CA:C.

Step 1: Express A:BA:B and 2B:C2B:C

From the ratio A:B=2:3A:B = 2:3, we can express this as: AB=23orA=23B\frac{A}{B} = \frac{2}{3} \quad \text{or} \quad A = \frac{2}{3}B

From 2B:C=8:52B:C = 8:5, we can express this as: 2BC=85orC=582B=54B\frac{2B}{C} = \frac{8}{5} \quad \text{or} \quad C = \frac{5}{8} \cdot 2B = \frac{5}{4}B

Step 2: Express A:CA:C

Now we need to find the ratio AC\frac{A}{C}.

Substitute A=23BA = \frac{2}{3}B and C=54BC = \frac{5}{4}B into the ratio AC\frac{A}{C}: AC=23B54B=23×45=815\frac{A}{C} = \frac{\frac{2}{3}B}{\frac{5}{4}B} = \frac{2}{3} \times \frac{4}{5} = \frac{8}{15}

Final Answer:

The ratio A:C=8:15A:C = 8:15.

Would you like more details on this solution or have any further questions?

Here are five related questions for further practice:

  1. If A:B=3:4A:B = 3:4 and B:C=5:6B:C = 5:6, what is A:CA:C?
  2. Given A:B=5:7A:B = 5:7 and B:C=9:11B:C = 9:11, find A:CA:C.
  3. If 3A:B=9:43A:B = 9:4 and B:C=8:7B:C = 8:7, what is A:CA:C?
  4. If A:B=7:2A:B = 7:2 and 4B:C=10:94B:C = 10:9, find A:CA:C.
  5. Given A:B=3:5A:B = 3:5 and 6B:C=12:136B:C = 12:13, what is A:CA:C?

Tip: When working with ratios, always try to express everything in terms of one variable (like B here), then simplify.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Ratios and Proportions
Algebra

Formulas

Ratio: A:B = m:n implies A = (m/n) * B
Cross-multiplication to simplify compound ratios

Theorems

Properties of Ratios

Suitable Grade Level

Grades 6-8