Math Problem Statement

Tentukan invers dari: a. F(x) = sqrt(x + 6), b. F(x) = cuberoot(2x - 6), c. F(x) = (-4x + 2) / (2x + 5), d. F(x) = 3/5 (2x + 3)

Solution

The image asks to find the inverse of the following functions:

a. F(x)=x+6F(x) = \sqrt{x + 6}

To find the inverse, follow these steps:

  1. Replace F(x)F(x) with yy: y=x+6y = \sqrt{x + 6}
  2. Swap xx and yy: x=y+6x = \sqrt{y + 6}
  3. Square both sides: x2=y+6x^2 = y + 6
  4. Solve for yy: y=x26y = x^2 - 6

Thus, the inverse is: F1(x)=x26F^{-1}(x) = x^2 - 6


b. F(x)=2x63F(x) = \sqrt[3]{2x - 6}

  1. Replace F(x)F(x) with yy: y=2x63y = \sqrt[3]{2x - 6}
  2. Swap xx and yy: x=2y63x = \sqrt[3]{2y - 6}
  3. Cube both sides: x3=2y6x^3 = 2y - 6
  4. Solve for yy: 2y=x3+62y = x^3 + 6 y=x3+62y = \frac{x^3 + 6}{2}

Thus, the inverse is: F1(x)=x3+62F^{-1}(x) = \frac{x^3 + 6}{2}


c. F(x)=4x+22x+5F(x) = \frac{-4x + 2}{2x + 5}

  1. Replace F(x)F(x) with yy: y=4x+22x+5y = \frac{-4x + 2}{2x + 5}
  2. Swap xx and yy: x=4y+22y+5x = \frac{-4y + 2}{2y + 5}
  3. Cross-multiply: x(2y+5)=4y+2x(2y + 5) = -4y + 2
  4. Expand both sides: 2xy+5x=4y+22xy + 5x = -4y + 2
  5. Collect all terms involving yy on one side: 2xy+4y=25x2xy + 4y = 2 - 5x y(2x+4)=25xy(2x + 4) = 2 - 5x
  6. Solve for yy: y=25x2x+4y = \frac{2 - 5x}{2x + 4}

Thus, the inverse is: F1(x)=25x2x+4F^{-1}(x) = \frac{2 - 5x}{2x + 4}


d. F(x)=35(2x+3)F(x) = \frac{3}{5} (2x + 3)

  1. Replace F(x)F(x) with yy: y=35(2x+3)y = \frac{3}{5}(2x + 3)
  2. Multiply both sides by 5: 5y=3(2x+3)5y = 3(2x + 3)
  3. Expand: 5y=6x+95y = 6x + 9
  4. Solve for xx: 6x=5y96x = 5y - 9 x=5y96x = \frac{5y - 9}{6}

Thus, the inverse is: F1(x)=5x96F^{-1}(x) = \frac{5x - 9}{6}


Would you like more details or explanations on any of the steps?

Here are 5 related questions:

  1. What is the general process for finding the inverse of a function?
  2. How do we know if a function has an inverse?
  3. What are the properties of an inverse function?
  4. How do you check if your inverse function is correct?
  5. Can all functions be inverted? Why or why not?

Tip: When finding an inverse function, swapping xx and yy is the key first step in solving for the inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Functions
Algebra
Radicals
Rational Functions

Formulas

For inverse: Swap x and y, then solve for y
F(x) = sqrt(x + 6) -> F^-1(x) = x^2 - 6
F(x) = cuberoot(2x - 6) -> F^-1(x) = (x^3 + 6) / 2
F(x) = (-4x + 2) / (2x + 5) -> F^-1(x) = (2 - 5x) / (2x + 4)
F(x) = 3/5(2x + 3) -> F^-1(x) = (5x - 9) / 6

Theorems

Inverse Function Theorem

Suitable Grade Level

Grades 9-12