Math Problem Statement

  1. F(x) = (2x - 6)^2 + 9 2. F(x) = (6x + 12)^2 3. F(x) = \frac{2x - 3}{6x - 1} 4. F(x) = \frac{x}{3 + 7x} 5. F(x) = \frac{3x + 6}{2x - 9} tentukan invers bilangan diatas

Solution

To find the inverse of each given function F(x)F(x), we follow these general steps:

  1. Replace F(x)F(x) with yy.
  2. Swap xx and yy.
  3. Solve for yy.

Let's determine the inverse of each function:

1. F(x)=(2x6)2+9F(x) = (2x - 6)^2 + 9

Step-by-step:

  1. Replace F(x)F(x) with yy: y=(2x6)2+9y = (2x - 6)^2 + 9
  2. Swap xx and yy: x=(2y6)2+9x = (2y - 6)^2 + 9
  3. Solve for yy: x9=(2y6)2x - 9 = (2y - 6)^2 x9=2y6\sqrt{x - 9} = 2y - 6 y=x9+62andy=x9+62y = \frac{\sqrt{x - 9} + 6}{2} \quad \text{and} \quad y = \frac{-\sqrt{x - 9} + 6}{2} Since squaring introduces both positive and negative roots, the inverse is a piecewise function.

Inverse: F1(x)=x9+62F^{-1}(x) = \frac{\sqrt{x - 9} + 6}{2} and F1(x)=x9+62F^{-1}(x) = \frac{-\sqrt{x - 9} + 6}{2}


2. F(x)=(6x+12)2F(x) = (6x + 12)^2

Step-by-step:

  1. Replace F(x)F(x) with yy: y=(6x+12)2y = (6x + 12)^2
  2. Swap xx and yy: x=(6y+12)2x = (6y + 12)^2
  3. Solve for yy: x=6y+12\sqrt{x} = 6y + 12 y=x126andy=x126y = \frac{\sqrt{x} - 12}{6} \quad \text{and} \quad y = \frac{-\sqrt{x} - 12}{6}

Inverse: F1(x)=x126F^{-1}(x) = \frac{\sqrt{x} - 12}{6} and F1(x)=x126F^{-1}(x) = \frac{-\sqrt{x} - 12}{6}


3. F(x)=2x36x1F(x) = \frac{2x - 3}{6x - 1}

Step-by-step:

  1. Replace F(x)F(x) with yy: y=2x36x1y = \frac{2x - 3}{6x - 1}
  2. Swap xx and yy: x=2y36y1x = \frac{2y - 3}{6y - 1}
  3. Solve for yy: x(6y1)=2y3x(6y - 1) = 2y - 3 6xyx=2y36xy - x = 2y - 3 6xy2y=x36xy - 2y = x - 3 y(6x2)=x3y(6x - 2) = x - 3 y=x36x2y = \frac{x - 3}{6x - 2}

Inverse: F1(x)=x36x2F^{-1}(x) = \frac{x - 3}{6x - 2}


4. F(x)=x3+7xF(x) = \frac{x}{3 + 7x}

Step-by-step:

  1. Replace F(x)F(x) with yy: y=x3+7xy = \frac{x}{3 + 7x}
  2. Swap xx and yy: x=y3+7yx = \frac{y}{3 + 7y}
  3. Solve for yy: x(3+7y)=yx(3 + 7y) = y 3x+7xy=y3x + 7xy = y 7xyy=3x7xy - y = -3x y(7x1)=3xy(7x - 1) = -3x y=3x7x1y = \frac{-3x}{7x - 1}

Inverse: F1(x)=3x7x1F^{-1}(x) = \frac{-3x}{7x - 1}


5. F(x)=3x+62x9F(x) = \frac{3x + 6}{2x - 9}

Step-by-step:

  1. Replace F(x)F(x) with yy: y=3x+62x9y = \frac{3x + 6}{2x - 9}
  2. Swap xx and yy: x=3y+62y9x = \frac{3y + 6}{2y - 9}
  3. Solve for yy: x(2y9)=3y+6x(2y - 9) = 3y + 6 2xy9x=3y+62xy - 9x = 3y + 6 2xy3y=9x+62xy - 3y = 9x + 6 y(2x3)=9x+6y(2x - 3) = 9x + 6 y=9x+62x3y = \frac{9x + 6}{2x - 3}

Inverse: F1(x)=9x+62x3F^{-1}(x) = \frac{9x + 6}{2x - 3}


Would you like more details on any of these solutions or have any questions?

Here are 5 related questions to expand on the concept:

  1. How do we determine the domain and range of an inverse function?
  2. What happens to the graph of a function when you find its inverse?
  3. Are there functions that do not have inverses? If so, why?
  4. How can we verify that a function is the inverse of another?
  5. Why do some functions produce multiple inverses when squared?

Tip: When finding inverses of functions, always check that the function is one-to-one (passes the horizontal line test), as this guarantees the existence of an inverse.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Functions
Algebra
Rational Functions
Quadratic Functions

Formulas

Inverse of a function: Swap x and y, then solve for y
Solving rational equations
Solving quadratic equations

Theorems

Inverse Function Theorem
Square root property for solving quadratic equations

Suitable Grade Level

Grades 10-12