Math Problem Statement
Нужно найти производные функций ниже (по переменной x), при этом нужно показать, как именно берутся производные (например, явно показать, что используется производная произведения, производная композиции и т.д.), а упрощать до конечного ответа не нужно.
-
arctg(ln(1/sqrt(sin(x))))+(x^3-1)^2*arcsin(sqrt(x^2/(x+1)))
-
(x*sin(ax)+x^(sin(x)))^x
-
x*sin(arcctg(sqrt(x^2-x)))*tg(arccos(1/sqrt(x^2-x)))
-
(1-x^x)*(1-x^(cos(x)))^2
-
tg(sin^2(x))*cos(tg^2(x))
-
(2-x^2)cos(x)+ 2xsin(sqrt(x))
-
sin(cos^2(x)+x)*cos(sin^2(x))
-
(1+nx^m)*sqrt(1+mx^n)
-
1/(tg(arcsin(sqrt(x+ln(x)))))+ctg(arcsin(sqrt(ln(x))))
-
1/(ln((sqrt(x^2+1)+x^3)/(sqrt(x^3+1)-x^2)))
-
((tg(x)*(1-x)^m)/((1+x)^n))^(1/(m+n))
-
1/(sqrt(1+x^2)*(x+sqrt(1+x^2)))
-
(x+(x+x^(1/5))^(1/4))^(1/3)
-
(sin^n(x^x))/(cos^n(x^x))
-
tg(x)*cos^n(x)+(ctg(x))*sqrt(sin^m(sqrt(x)))
-
e^(x*(x^2+2)*ln(x^3+1))
-
(((1-x^2)/2)*sin(x)-((1-x)^2/2)*cos(x))e^(-xcos(x))
-
(ln((x^3)*(1/(e^x-1))))/(x^x)
-
(e^ax)(asin(bx)-bcos(bx))/(sqrt(a(x^2)+(b^2)*x))
-
e^x+e^(e^x)+e^(x*(e^x))
-
ln(ln^2(ln^3(x)))
-
(1/2)ln(1+e^x)+(1/4)(1+x^2)-1/(2*(1+e^x))
-
(b/a)x+(2sqrt(a^2-b^2)*arctg(sqrt((a-b)/(a+b)))*tanh(x/2))/a
-
ch(x)/sh^2(x)-ln(cth(x/2))
-
log(e)/(log(x))*log(x)/log(x)*log(x^x)/log(e)
-
sqrt(x^4+3*x^2+1)*arctg(sqrt(x^3+1))
-
e^(x^(cos(x)))*e^((cos(x))^x)
-
(x^3+2*x^2+1)/(sqrt(x^2+1))
-
(tan(x^2)+ln(x+sqrt(x)))/(x^3)
-
(sqrt(ln(x^2+1)+tan(x)))/((x^5-2)*arccos(x))
-
(1+x^2)*arccos(x/(sqrt(x^2+1)))
-
(x^3)*sinh(x^2)+e^(x^x)
-
tanh(x^3)+cosh(x^ln(x))
-
(x^3)*ln(|x|)+ln(|x|+1)*cosh(x)
-
arctan((x^3+1)/(sinh(x)))
-
(e^(x^x))*sin(x)/cosh(x)
-
ln(x^2+sec^2(x^2))
-
arctanh(x^2+1)
-
ln(1+x^2)*a^((ln(1+x^2))^(-1))
-
(x^4)log(2^x+sqrt((x^2)(2^x)+1))/log(2)
-
(arctanh((x^3)/((x^2)+1)))^(-1)
-
(sqrt(x^4+1))/(x+ln(sinh(x)))
-
1/(tanh(e^(sin(x)))
-
(a^x)*(log(x)/log(a))*x^(log(x)/log(a))
-
(1/x-x*sin(x))^(1/5)
-
x^(x^x)*cos(x^(ln(x)))
-
2sqrt(x(2^x)x^(2ln(x)))
-
x*arctg((x^2)log(xln(x))/log(a))
-
log(sin(x)+arcsin(sqrt(x))+sin(x-x^2))/log(2)
-
sqrt(sin(sqrt(sin(sqrt(sin(sqrt(x)))))))
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Differentiation
Calculus
Trigonometric Functions
Logarithmic Functions
Exponential Functions
Formulas
Product Rule: (uv)' = u'v + uv'
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)
Logarithmic Differentiation: ln(y) = ln(f(x)) and then differentiate
Theorems
Fundamental Theorem of Calculus
Rules of Differentiation
Suitable Grade Level
Grades 11-12
Related Recommendation
Differentiation Rules: Trigonometric, Exponential, Logarithmic, and Radical Functions
Find the Derivative Using the Chain Rule and Product Rule
Find the Gradient of Sine, Cosine, Exponential, and Logarithmic Functions
Differentiation Practice: Chain Rule, Product Rule, and Quotient Rule
Evaluate Derivatives of Polynomial and Exponential Functions