Math Problem Statement

Could you answer more from 12 to 20

Solution

Sure! Here are examples of differentiation for rules 12 to 20 as listed in the guide.

12. Trigonometric Functions (Tangent Rule)

  • Example: f(x)=tan(x3)f(x) = \tan(x^3)
  • Differentiation: f(x)=sec2(x3)3x2f'(x) = \sec^2(x^3) \cdot 3x^2

13. Trigonometric Functions (Secant Rule)

  • Example: f(x)=sec(2x)f(x) = \sec(2x)
  • Differentiation: f(x)=sec(2x)tan(2x)2f'(x) = \sec(2x) \cdot \tan(2x) \cdot 2

14. Trigonometric Functions (Cosecant Rule)

  • Example: f(x)=csc(x2)f(x) = \csc(x^2)
  • Differentiation: f(x)=csc(x2)cot(x2)2xf'(x) = -\csc(x^2) \cdot \cot(x^2) \cdot 2x

15. Trigonometric Functions (Cotangent Rule)

  • Example: f(x)=cot(4x)f(x) = \cot(4x)
  • Differentiation: f(x)=csc2(4x)4f'(x) = -\csc^2(4x) \cdot 4

16. Radical Function Rule

  • Example: f(x)=x2+4xf(x) = \sqrt{x^2 + 4x}
  • Differentiation: f(x)=12x2+4x(2x+4)=x+2x2+4xf'(x) = \frac{1}{2\sqrt{x^2 + 4x}} \cdot (2x + 4) = \frac{x + 2}{\sqrt{x^2 + 4x}}

17. Exponential Function: Case 1 (Base ee)

  • Example: f(x)=e3x2f(x) = e^{3x^2}
  • Differentiation: f(x)=e3x26xf'(x) = e^{3x^2} \cdot 6x

18. Exponential Function: Case 2 (Base aa)

  • Example: f(x)=52x+1f(x) = 5^{2x+1}
  • Differentiation: f(x)=52x+1ln(5)2f'(x) = 5^{2x+1} \cdot \ln(5) \cdot 2

19. Logarithmic Function: Case 1 (Base ee)

  • Example: f(x)=ln(7x+3)f(x) = \ln(7x + 3)
  • Differentiation: f(x)=77x+3f'(x) = \frac{7}{7x + 3}

20. Logarithmic Function: Case 2 (Base aa)

  • Example: f(x)=log3(x21)f(x) = \log_3(x^2 - 1)
  • Differentiation: f(x)=2x(x21)ln(3)f'(x) = \frac{2x}{(x^2 - 1) \ln(3)}

These examples cover the

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Trigonometric Functions
Exponential Functions
Logarithmic Functions
Radical Functions

Formulas

Differentiation rules for trigonometric, exponential, logarithmic, and radical functions

Theorems

-

Suitable Grade Level

Advanced High School