Math Problem Statement

what is the derivative of y = y(x), where x^3cosy + sin(2x-5y)= 4

Solution

To find the derivative of y=y(x)y = y(x) given the equation x3cosy+sin(2x5y)=4x^3 \cos y + \sin(2x - 5y) = 4, we will use implicit differentiation.

  1. Differentiate both sides with respect to xx:

ddx(x3cosy)+ddx(sin(2x5y))=0\frac{d}{dx}(x^3 \cos y) + \frac{d}{dx}(\sin(2x - 5y)) = 0

  1. Applying the product rule to x3cosyx^3 \cos y:

ddx(x3cosy)=3x2cosy+x3(sinydydx)\frac{d}{dx}(x^3 \cos y) = 3x^2 \cos y + x^3 (-\sin y \frac{dy}{dx})

  1. For sin(2x5y)\sin(2x - 5y), we apply the chain rule:

ddx(sin(2x5y))=cos(2x5y)(25dydx)\frac{d}{dx}(\sin(2x - 5y)) = \cos(2x - 5y) \left(2 - 5\frac{dy}{dx}\right)

  1. Setting the differentiated equation to zero:

3x2cosyx3sinydydx+cos(2x5y)(25dydx)=03x^2 \cos y - x^3 \sin y \frac{dy}{dx} + \cos(2x - 5y)(2 - 5\frac{dy}{dx}) = 0

  1. Rearranging the equation to isolate dydx\frac{dy}{dx}:

x3sinydydx5cos(2x5y)dydx=3x2cosy2cos(2x5y)-x^3 \sin y \frac{dy}{dx} - 5 \cos(2x - 5y) \frac{dy}{dx} = -3x^2 \cos y - 2 \cos(2x - 5y)

  1. Factoring out dydx\frac{dy}{dx}:

(x3siny5cos(2x5y))dydx=3x2cosy2cos(2x5y)\left(-x^3 \sin y - 5 \cos(2x - 5y)\right) \frac{dy}{dx} = -3x^2 \cos y - 2 \cos(2x - 5y)

  1. Finally, solving for dydx\frac{dy}{dx}:

dydx=3x2cosy2cos(2x5y)x3siny5cos(2x5y)\frac{dy}{dx} = \frac{-3x^2 \cos y - 2 \cos(2x - 5y)}{-x^3 \sin y - 5 \cos(2x - 5y)}

This simplifies to:

dydx=3x2cosy+2cos(2x5y)x3siny+5cos(2x5y)\frac{dy}{dx} = \frac{3x^2 \cos y + 2 \cos(2x - 5y)}{x^3 \sin y + 5 \cos(2x - 5y)}

Would you like any further details on this process or any specific parts clarified? Here are some follow-up questions you might consider:

  1. What does implicit differentiation mean in this context?
  2. Can you explain the product and chain rules used in the differentiation?
  3. How do we interpret the derivative in terms of yy and xx?
  4. What would happen if we set specific values for xx or yy?
  5. Are there applications of this type of derivative in real-world scenarios?

Tip: Always keep track of each term when applying the chain and product rules to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Trigonometric Functions
Calculus

Formulas

Product Rule: (uv)' = u'v + uv'
Chain Rule: (f(g(x)))' = f'(g(x)) * g'(x)

Theorems

Implicit Function Theorem

Suitable Grade Level

Grades 11-12