Math Problem Statement

its z^1/4

Solution

To find the cube roots of z=4(cos(2π3)+isin(2π3))z = 4 \left( \cos \left( \frac{2\pi}{3} \right) + i \sin \left( \frac{2\pi}{3} \right) \right), we will use De Moivre's Theorem.

Given z=r(cosθ+isinθ)z = r (\cos \theta + i \sin \theta), the nn-th roots are given by: z1/n=r1/n(cos(θ+2kπn)+isin(θ+2kπn))z^{1/n} = r^{1/n} \left( \cos \left( \frac{\theta + 2k\pi}{n} \right) + i \sin \left( \frac{\theta + 2k\pi}{n} \right) \right) for k=0,1,,n1k = 0, 1, \ldots, n-1.

For this problem:

  • r=4r = 4
  • θ=2π3\theta = \frac{2\pi}{3}
  • n=3n = 3

Thus, the cube roots of zz are given by: z1/3=41/3(cos(2π3+2kπ3)+isin(2π3+2kπ3))z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 2k\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 2k\pi}{3} \right) \right)

Let's calculate the cube roots for k=0,1,2k = 0, 1, 2.

When k=0k = 0:

z1/3=41/3(cos(2π3+03)+isin(2π3+03))z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 0}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 0}{3} \right) \right) =41/3(cos(2π9)+isin(2π9))= 4^{1/3} \left( \cos \left( \frac{2\pi}{9} \right) + i \sin \left( \frac{2\pi}{9} \right) \right)

When k=1k = 1:

z1/3=41/3(cos(2π3+2π3)+isin(2π3+2π3))z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 2\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 2\pi}{3} \right) \right) =41/3(cos(8π9)+isin(8π9))= 4^{1/3} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right)

When k=2k = 2:

z1/3=41/3(cos(2π3+4π3)+isin(2π3+4π3))z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 4\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 4\pi}{3} \right) \right) =41/3(cos(14π9)+isin(14π9))= 4^{1/3} \left( \cos \left( \frac{14\pi}{9} \right) + i \sin \left( \frac{14\pi}{9} \right) \right)

Now, let's simplify the expressions.

Simplified Results:

  1. For k=0k = 0: z1/3=43(cos(2π9)+isin(2π9))z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{2\pi}{9} \right) + i \sin \left( \frac{2\pi}{9} \right) \right)

  2. For k=1k = 1: z1/3=43(cos(8π9)+isin(8π9))z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right)

  3. For k=2k = 2: z1/3=43(cos(14π9)+isin(14π9))z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{14\pi}{9} \right) + i \sin \left( \frac{14\pi}{9} \right) \right)

If you have any questions or want more details, please let me know!

Here are 8 related questions for further practice:

  1. What is the general form of the nth root of a complex number?
  2. How do you convert a complex number from rectangular form to polar form?
  3. What is De Moivre's Theorem and how is it used?
  4. How do you find the cube roots of a real number using complex numbers?
  5. What are the geometric interpretations of complex roots on the complex plane?
  6. How do you verify the correctness of the roots of a complex number?
  7. What is the principal root of a complex number?
  8. How do you find the fourth roots of a complex number?

Tip: When dealing with complex roots, always express the number in polar form for easier computation and apply De Moivre's Theorem for roots and powers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Cube Roots
De Moivre's Theorem

Formulas

De Moivre's Theorem

Theorems

De Moivre's Theorem

Suitable Grade Level

Advanced High School / College