To find the cube roots of z = 4 ( cos ( 2 π 3 ) + i sin ( 2 π 3 ) ) z = 4 \left( \cos \left( \frac{2\pi}{3} \right) + i \sin \left( \frac{2\pi}{3} \right) \right) z = 4 ( cos ( 3 2 π ) + i sin ( 3 2 π ) ) , we will use De Moivre's Theorem.
Given z = r ( cos θ + i sin θ ) z = r (\cos \theta + i \sin \theta) z = r ( cos θ + i sin θ ) , the n n n -th roots are given by:
z 1 / n = r 1 / n ( cos ( θ + 2 k π n ) + i sin ( θ + 2 k π n ) ) z^{1/n} = r^{1/n} \left( \cos \left( \frac{\theta + 2k\pi}{n} \right) + i \sin \left( \frac{\theta + 2k\pi}{n} \right) \right) z 1/ n = r 1/ n ( cos ( n θ + 2 kπ ) + i sin ( n θ + 2 kπ ) )
for k = 0 , 1 , … , n − 1 k = 0, 1, \ldots, n-1 k = 0 , 1 , … , n − 1 .
For this problem:
r = 4 r = 4 r = 4
θ = 2 π 3 \theta = \frac{2\pi}{3} θ = 3 2 π
n = 3 n = 3 n = 3
Thus, the cube roots of z z z are given by:
z 1 / 3 = 4 1 / 3 ( cos ( 2 π 3 + 2 k π 3 ) + i sin ( 2 π 3 + 2 k π 3 ) ) z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 2k\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 2k\pi}{3} \right) \right) z 1/3 = 4 1/3 ( cos ( 3 3 2 π + 2 kπ ) + i sin ( 3 3 2 π + 2 kπ ) )
Let's calculate the cube roots for k = 0 , 1 , 2 k = 0, 1, 2 k = 0 , 1 , 2 .
When k = 0 k = 0 k = 0 :
z 1 / 3 = 4 1 / 3 ( cos ( 2 π 3 + 0 3 ) + i sin ( 2 π 3 + 0 3 ) ) z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 0}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 0}{3} \right) \right) z 1/3 = 4 1/3 ( cos ( 3 3 2 π + 0 ) + i sin ( 3 3 2 π + 0 ) )
= 4 1 / 3 ( cos ( 2 π 9 ) + i sin ( 2 π 9 ) ) = 4^{1/3} \left( \cos \left( \frac{2\pi}{9} \right) + i \sin \left( \frac{2\pi}{9} \right) \right) = 4 1/3 ( cos ( 9 2 π ) + i sin ( 9 2 π ) )
When k = 1 k = 1 k = 1 :
z 1 / 3 = 4 1 / 3 ( cos ( 2 π 3 + 2 π 3 ) + i sin ( 2 π 3 + 2 π 3 ) ) z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 2\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 2\pi}{3} \right) \right) z 1/3 = 4 1/3 ( cos ( 3 3 2 π + 2 π ) + i sin ( 3 3 2 π + 2 π ) )
= 4 1 / 3 ( cos ( 8 π 9 ) + i sin ( 8 π 9 ) ) = 4^{1/3} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right) = 4 1/3 ( cos ( 9 8 π ) + i sin ( 9 8 π ) )
When k = 2 k = 2 k = 2 :
z 1 / 3 = 4 1 / 3 ( cos ( 2 π 3 + 4 π 3 ) + i sin ( 2 π 3 + 4 π 3 ) ) z^{1/3} = 4^{1/3} \left( \cos \left( \frac{\frac{2\pi}{3} + 4\pi}{3} \right) + i \sin \left( \frac{\frac{2\pi}{3} + 4\pi}{3} \right) \right) z 1/3 = 4 1/3 ( cos ( 3 3 2 π + 4 π ) + i sin ( 3 3 2 π + 4 π ) )
= 4 1 / 3 ( cos ( 14 π 9 ) + i sin ( 14 π 9 ) ) = 4^{1/3} \left( \cos \left( \frac{14\pi}{9} \right) + i \sin \left( \frac{14\pi}{9} \right) \right) = 4 1/3 ( cos ( 9 14 π ) + i sin ( 9 14 π ) )
Now, let's simplify the expressions.
Simplified Results:
For k = 0 k = 0 k = 0 :
z 1 / 3 = 4 3 ( cos ( 2 π 9 ) + i sin ( 2 π 9 ) ) z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{2\pi}{9} \right) + i \sin \left( \frac{2\pi}{9} \right) \right) z 1/3 = 3 4 ( cos ( 9 2 π ) + i sin ( 9 2 π ) )
For k = 1 k = 1 k = 1 :
z 1 / 3 = 4 3 ( cos ( 8 π 9 ) + i sin ( 8 π 9 ) ) z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right) z 1/3 = 3 4 ( cos ( 9 8 π ) + i sin ( 9 8 π ) )
For k = 2 k = 2 k = 2 :
z 1 / 3 = 4 3 ( cos ( 14 π 9 ) + i sin ( 14 π 9 ) ) z^{1/3} = \sqrt[3]{4} \left( \cos \left( \frac{14\pi}{9} \right) + i \sin \left( \frac{14\pi}{9} \right) \right) z 1/3 = 3 4 ( cos ( 9 14 π ) + i sin ( 9 14 π ) )
If you have any questions or want more details, please let me know!
Here are 8 related questions for further practice:
What is the general form of the nth root of a complex number?
How do you convert a complex number from rectangular form to polar form?
What is De Moivre's Theorem and how is it used?
How do you find the cube roots of a real number using complex numbers?
What are the geometric interpretations of complex roots on the complex plane?
How do you verify the correctness of the roots of a complex number?
What is the principal root of a complex number?
How do you find the fourth roots of a complex number?
Tip: When dealing with complex roots, always express the number in polar form for easier computation and apply De Moivre's Theorem for roots and powers.