Math Problem Statement

Find the other 5 trig function and the reference angle

Find the other 5 trig functions and the reference angle given that sin(θ) = 4/5 and cos(θ) < 0.

Solution

We are given:

sinθ=45,cosθ<0\sin \theta = \frac{4}{5}, \quad \cos \theta < 0

Step 1: Determine the quadrant of θ\theta

Since sinθ>0\sin \theta > 0 and cosθ<0\cos \theta < 0, the angle θ\theta lies in the second quadrant.


Step 2: Use the Pythagorean identity to find cosθ\cos \theta

The Pythagorean identity is: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

Substitute sinθ=45\sin \theta = \frac{4}{5}: (45)2+cos2θ=1\left( \frac{4}{5} \right)^2 + \cos^2 \theta = 1

1625+cos2θ=1\frac{16}{25} + \cos^2 \theta = 1

cos2θ=11625=925\cos^2 \theta = 1 - \frac{16}{25} = \frac{9}{25}

cosθ=±35\cos \theta = \pm \frac{3}{5}

Since cosθ<0\cos \theta < 0, we take: cosθ=35\cos \theta = -\frac{3}{5}


Step 3: Find the other trigonometric functions

1. Tangent (tanθ\tan \theta)

tanθ=sinθcosθ=4535=43\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3}

2. Cosecant (cscθ\csc \theta)

cscθ=1sinθ=145=54\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{4}{5}} = \frac{5}{4}

3. Secant (secθ\sec \theta)

secθ=1cosθ=135=53\sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{3}{5}} = -\frac{5}{3}

4. Cotangent (cotθ\cot \theta)

cotθ=cosθsinθ=3545=34\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{-\frac{3}{5}}{\frac{4}{5}} = -\frac{3}{4}


Step 4: Find the reference angle

The reference angle is the acute angle formed with the x-axis. Since sinθ=45\sin \theta = \frac{4}{5}, we use: sin1(45)\sin^{-1} \left( \frac{4}{5} \right)

Using approximate values: Reference angle53.13\text{Reference angle} \approx 53.13^\circ


Final Answer:

  1. cosθ=35\cos \theta = -\frac{3}{5}
  2. tanθ=43\tan \theta = -\frac{4}{3}
  3. cscθ=54\csc \theta = \frac{5}{4}
  4. secθ=53\sec \theta = -\frac{5}{3}
  5. cotθ=34\cot \theta = -\frac{3}{4}

Reference angle: 53.1353.13^\circ.


Would you like me to break this down further? Here are some related questions for deeper understanding:

  1. How can you verify the quadrant for a given trigonometric condition?
  2. Why is the reference angle always positive?
  3. How does the Pythagorean identity help in finding other trigonometric functions?
  4. Can you apply these calculations to radians?
  5. What is the geometric interpretation of the given values?

Tip: Memorize common trigonometric values for angles like 3030^\circ, 4545^\circ, and 6060^\circ to speed up calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Reference Angles
Pythagorean Identity
Quadrants

Formulas

sin^2(θ) + cos^2(θ) = 1
tan(θ) = sin(θ) / cos(θ)
csc(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = cos(θ) / sin(θ)

Theorems

Pythagorean Identity
Trigonometric Function Definitions

Suitable Grade Level

Grades 9-12