Math Problem Statement

use the unit circle to find the value of tan pi/6 and even or odd trigonometric functions to find the value of tan (-pi/6)

Solution

Let's solve this step by step:

Step 1: Use the unit circle to find the value of tan(π6)\tan\left(\frac{\pi}{6}\right).

  • On the unit circle, the angle π6\frac{\pi}{6} (or 30°) corresponds to the point (32,12)\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right).
  • The tangent function is defined as tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.
  • For π6\frac{\pi}{6}:
    • sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}
    • cos(π6)=32\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

So, tan(π6)=sin(π6)cos(π6)=1232=13=33\tan\left(\frac{\pi}{6}\right) = \frac{\sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}

Thus, tan(π6)=33\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}.

Step 2: Use even or odd properties of trigonometric functions to find tan(π6)\tan\left(-\frac{\pi}{6}\right).

  • Tangent is an odd function, which means that: tan(θ)=tan(θ)\tan(-\theta) = -\tan(\theta)
  • Therefore: tan(π6)=tan(π6)\tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right)
  • From Step 1, we know that tan(π6)=33\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}, so: tan(π6)=33\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}

Final Answer:

  • tan(π6)=33\tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}
  • tan(π6)=33\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}

Would you like further details or have any questions?

5 Related Questions:

  1. What is the value of tan(π4)\tan\left(\frac{\pi}{4}\right) using the unit circle?
  2. How do you find the value of tan(π3)\tan\left(\frac{\pi}{3}\right)?
  3. What are the even and odd properties of the sine and cosine functions?
  4. How do you calculate the value of sin(π6)\sin(-\frac{\pi}{6}) using the unit circle?
  5. What is the relationship between tangent and cotangent?

Tip:

Remember that sine is also an odd function, while cosine is even. This can help you quickly evaluate trigonometric values for negative angles!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Even and Odd Functions

Formulas

tan(θ) = sin(θ) / cos(θ)
tan(-θ) = -tan(θ)

Theorems

Odd Function Theorem for Trigonometric Functions

Suitable Grade Level

Grades 10-12